scholarly journals First Report of Anthracnose on Pecan (Carya illinoiensis) Caused by Colletotrichum siamense in Korea

Plant Disease ◽  
2021 ◽  
Author(s):  
Ji Yeon Oh ◽  
Jeong-In Heo ◽  
Dong-Hyeon Lee

In 2020, severely infected fruit of pecan, Carya illinoiensis, showing distinct anthracnose symptoms were observed from pecan orchards in Uiseong (36°21'31.5"N 128°27'15.9"E) and Miryang (35°22'54.9"N 128°48'06.5"E) in South Korea. Visible symptoms occurred on fruit of the tree between June and July, which included dark, depressed and covered with irregularly shaped lesions. As the disease progressed, the lesions expanded and merged over time, leading to abscission of the fruit, which resulted in severe yield loss of pecan fruit. Of pecan varieties including Caddo, Giles and Peruque that were cultivated in each pecan orchard, Caddo appeared to be most susceptible to the disease. Estimated losses were approximately 30% and 70% for the Uiseong and Miryang pecan orchard, respectively. For pathogen isolation, ten symptomatic fruits of pecan were randomly collected and brought to the laboratory. The fruits were surface disinfested for 30 s with 70% ethanol and 1% sodium hypochlorite. These were then rinsed with sterile distilled water twice, placed in a humid chamber, and incubated at 25 ± 1°C with a photoperiod of 12 h. Acervuli filled with salmon-colored conidial masses were produced abundantly on the fruit a day after the incubation. Conidia were single celled, hyaline, cylindrical having rounded ends, smooth walls, guttulate, 15.5 to 17.7 µm long, and 3.4 to 4.8 µm wide (n = 20). Monoconidial isolates were made on 2% malt extract agar and incubated at 25°Ϲ for two weeks in the dark condition. Of those that were successfully retained, two representative isolates from each orchard were deposited in the culture collection (CDH) of the National Institute of Forest Science, Korea (Accession No. CDH2020-17–18). To ensure the identity of the pathogen, molecular identification was made based on three gene regions, the internal transcribed spacer (ITS) region of rDNA, beta-tubulin (TUB2) gene and a partial sequence of the actin (ACT), which were amplified with ITS1F/ITS4, T1/Bt2b and ACT-512F/ACT-783R, respectively (Weir et al. 2012). These were then submitted to GenBank with accession numbers of MW380423–24 for ITS, MW387129–30 for TUB2 and MW387127–28 for ACT. A BLAST search in GenBank revealed that the sequences showed high similarity to those of Colletotrichum siamense, which were identical to MT434615 and MT274214 for ITS and ACT, respectively, and 99.7% to MK967337 for TUB2. Phylogenetic analysis based on the maximum likelihood method further showed that the isolates recovered in this study clustered with C. siamense, confirming its identity. Pathogenicity was confirmed by inoculating living pecan trees. Healthy fruits from five trees were surface cleaned with cotton soaked in sterile water and air-dried. To inoculate the pathogen, three to five fruit per tree were wounded with a sterilized needle, and an aliquot of 10 μl of spore suspension (1.0 × 105 conidia/ml) of C. siamense (CDH2020-18) was dropped on each wound. To keep moisture, each treated fruit was enveloped by a plastic bag where the cotton soaked in sterile water had been placed. Controls were treated with sterile distilled water drops. The symptoms with dark, depressed and irregularly shaped lesions developed from all inoculated treatments six weeks after the inoculations, which were identical to those observed in the field. However, no symptom was observed on the control. Colletotrichum siamense was successfully re-isolated, fulfilling Koch’s postulates. Taken together, it was confirmed that C. siamense is the causal agent of anthracnose on pecan. In Korea, C. siamense was reported causing anthracnose on apple, persimmon and plum (Farr and Rossman 2020). However, to our knowledge, this is the first report of anthracnose on pecan caused by C. siamense in Korea. To control the disease effectively, more attention should be paid to other regions of the country where the disease caused by the pathogen might occur.

Plant Disease ◽  
2020 ◽  
Author(s):  
Siti Izera Ismail ◽  
Nur Adlina Rahim ◽  
Dzarifah Zulperi

Thai basil (Ocimum basilicum L.) is widely cultivated in Malaysia and commonly used for culinary purposes. In March 2019, necrotic lesions were observed on the inflorescences of Thai basil plants with a disease incidence of 60% in Organic Edible Garden Unit, Faculty of Agriculture in the Serdang district (2°59'05.5"N 101°43'59.5"E) of Selangor province, Malaysia. Symptoms appeared as sudden, extensive brown spotting on the inflorescences of Thai basil that coalesced and rapidly expanded to cover the entire inflorescences. Diseased tissues (4×4 mm) were cut from the infected lesions, surface disinfected with 0.5% NaOCl for 1 min, rinsed three times with sterile distilled water, placed onto potato dextrose agar (PDA) plates and incubated at 25°C under 12-h photoperiod for 5 days. A total of 8 single-spore isolates were obtained from all sampled inflorescence tissues. The fungal colonies appeared white, turned grayish black with age and pale yellow on the reverse side. Conidia were one-celled, hyaline, subcylindrical with rounded end and 3 to 4 μm (width) and 13 to 15 μm (length) in size. For fungal identification to species level, genomic DNA of representative isolate (isolate C) was extracted using DNeasy Plant Mini Kit (Qiagen, USA). Internal transcribed spacer (ITS) region, calmodulin (CAL), actin (ACT), and chitin synthase-1 (CHS-1) were amplified using ITS5/ITS4 (White et al. 1990), CL1C/CL2C (Weir et al. 2012), ACT-512F/783R, and CHS-79F/CHS-345R primer sets (Carbone and Kohn 1999), respectively. A BLAST nucleotide search of ITS, CHS-1, CAL and ACT sequences showed 100% similarity to Colletotrichum siamense ex-type cultures strain C1315.2 (GenBank accession nos. ITS: JX010171 and CHS-1: JX009865) and isolate BPDI2 (CAL: FJ917505, ACT: FJ907423). The ITS, CHS-1, CAL and ACT sequences were deposited in GenBank as accession numbers MT571330, MW192791, MW192792 and MW140016. Pathogenicity was confirmed by spraying a spore suspension (1×106 spores/ml) of 7-day-old culture of isolate C onto 10 healthy inflorescences on five healthy Thai basil plants. Ten infloresences from an additional five control plants were only sprayed with sterile distilled water and the inoculated plants were covered with plastic bags for 2 days and maintained in a greenhouse at 28 ± 1°C, 98% relative humidity with a photoperiod of 12-h. Blossom blight symptoms resembling those observed in the field developed after 7 days on all inoculated inflorescences, while inflorescences on control plants remained asymptomatic. The experiment was repeated twice. C. siamense was successfully re-isolated from the infected inflorescences fulfilling Koch’s postulates. C. siamense has been reported causing blossom blight of Uraria in India (Srivastava et al. 2017), anthracnose on dragon fruit in India and fruits of Acca sellowiana in Brazil (Abirami et al. 2019; Fantinel et al. 2017). This pathogen can cause a serious threat to cultivation of Thai basil and there is currently no effective disease management strategy to control this disease. To our knowledge, this is the first report of blossom blight caused by C. siamense on Thai basil in Malaysia.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1580-1580
Author(s):  
J. H. Park ◽  
K. S. Han ◽  
J. Y. Kim ◽  
H. D. Shin

Sweet basil, Ocimum basilicum L., is a fragrant herb belonging to the family Lamiaceae. Originated in India 5,000 years ago, sweet basil plays a significant role in diverse cuisines across the world, especially in Asian and Italian cooking. In October 2008, hundreds of plants showing symptoms of leaf spot with nearly 100% incidence were found in polyethylene tunnels at an organic farm in Icheon, Korea. Leaf spots were circular to subcircular, water-soaked, dark brown with grayish center, and reached 10 mm or more in diameter. Diseased leaves defoliated prematurely. The damage purportedly due to this disease has reappeared every year with confirmation of the causal agent made again in 2011. A cercosporoid fungus was consistently associated with disease symptoms. Stromata were brown, consisting of brown cells, and 10 to 40 μm in width. Conidiophores were fasciculate (n = 2 to 10), olivaceous brown, paler upwards, straight to mildly curved, not geniculate in shorter ones or one to two times geniculate in longer ones, 40 to 200 μm long, occasionally reaching up to 350 μm long, 3.5 to 6 μm wide, and two- to six-septate. Conidia were hyaline, acicular to cylindric, straight in shorter ones, flexuous to curved in longer ones, truncate to obconically truncate at the base, three- to 16-septate, and 50 to 300 × 3.5 to 4.5 μm. Morphological characteristics of the fungus were consistent with the previous reports of Cercospora guatemalensis A.S. Mull. & Chupp (1,3). Voucher specimens were housed at Korea University herbarium (KUS). An isolate from KUS-F23757 was deposited in the Korean Agricultural Culture Collection (Accession No. KACC43980). Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequence of 548 bp was deposited in GenBank (Accession No. JQ995781). This showed >99% similarity with sequences of many Cercospora species, indicating their close phylogenetic relationship. Isolate of KACC43980 was used in the pathogenicity tests. Hyphal suspensions were prepared by grinding 3-week-old colonies grown on PDA with distilled water using a mortar and pestle. Five plants were inoculated with hyphal suspensions and five plants were sprayed with sterile distilled water. The plants were covered with plastic bags to maintain a relative humidity of 100% for 24 h and then transferred to a 25 ± 2°C greenhouse with a 12-h photoperiod. Typical symptoms of necrotic spots appeared on the inoculated leaves 6 days after inoculation, and were identical to the ones observed in the field. C. guatemalensis was reisolated from symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in Malawi, India, China, and Japan (2,3), but not in Korea. To our knowledge, this is the first report of C. guatemalensis on sweet basil in Korea. Since farming of sweet basil has recently started on a commercial scale in Korea, the disease poses a serious threat to safe production of this herb, especially in organic farming. References: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Ithaca, NY, 1953. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology & Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , May 5, 2012. (3) J. Nishikawa et al. J. Gen. Plant Pathol. 68:46, 2002.


Plant Disease ◽  
2021 ◽  
Author(s):  
Taixiang Chen ◽  
Han Lin Yue ◽  
Yong Xin Nie ◽  
Wanrong Wei

Daylily (Hemerocallis citrina Baroni) is a perennial herb whose flowers are commonly used in traditional Chinese cuisine. It is commercially cultivated in the Loess plateau of Gansu province, China. From July to October 2020, necrotic lesions were observed on the foliage of daylily plants in Huan County, Gansu, China, with an average disease incidence of 90%, and 52 to 86 disease index across four fields (approximate 6 hectares). Lesions were fusiform or nearly fusiform yellowish-brown spots of different sizes and a yellow irregular border. Older lesions were almost dark brown that often coalesced and expanded to cover the entire leaves. Thirty-four samples were collected from plants with typical foliar symptoms. Symptomatic tissues were excised from the margins of the lesions and sterilized with 75% ethanol for 20 s and 0.1% NaClO for 2 min, rinsed with sterilized water four times, dried on sterile paper towels, and cultured on Potato Dextrose Agar medium at 25°C for 7 days. A total of 34 fungal isolates with 100% isolation frequency were obtained and characterized. Colonies were white, becoming pale brown with age, reverse turned grayish black with age and irregular pale yellowish borders on the reverse side. Conidia (n=50) were hyaline, one-celled, subcylindrical with obtuse to slightly rounded ends, of 12-18.5×3.5-6 µm in size, (avg. 15.5×4.8 µm). The isolates were designated as K2010301 (51-54) and deposited in the Microbiological Culture Collection Center at College of Pastoral Agriculture Science and Technology, Lanzhou University (China). For fungal identification to species level, genomic DNA of a representative isolate (isolate MG) was extracted. Internal transcribed spacer (ITS) region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase-1 (CHS-1) and beta-tubulin (TUB2) were amplified using V9G/ITS4, GDF1/GDR1, CHS-354R/CHS-79F, and T1/Bt-2b primer sets (Damm et al., 2012), respectively, and deposited in GenBank under accession numbers MW811458, MW836582, MW836581, and MW836584. BLASTn showed higher than 99% identity with Colletotrichum siamense (GenBank: KP703350 (ITS), MN884050 (GAPDH), MN894598 (CHS-1), and KX578815 (TUB2)). A Bayesian inference analysis of the four concatenated loci showed that isolate MG grouped in the C. siamense clade. Pathogenicity tests were performed by spraying a spore suspension (1×105 conidia/mL) of a 10-day-old culture of isolate “MG” onto 3 healthy and asymptomatic daylily plants. Three control plants were only sprayed with the same volume of sterile distilled water. The inoculated plants were covered with black plastic bags for 2 days to maintain high relative humidity. Anthracnose symptoms resembling those observed in the field developed after 7 days on all inoculated plants, while no symptoms were observed on the control plants. The fungus was reisolated and identified as C. siamense based on morphological features and DNA sequence analysis, fulfilling Koch’s postulates. It has been demonstrated that C. liliacearum (Zhuang, 2005), C. gloeosporioides, and C. spaethianum (Yang et al., 2012) are anthracnose pathogens of H. citrina. To our knowledge, this is the first report of C. siamense causing daylily anthracnose worldwide. This fungal pathogen represents a severe threat and has the potential to cause yield losses of daylily, so further studies should focus on epidemiology and effective management strategies of this disease.


Plant Disease ◽  
2020 ◽  
Author(s):  
Wen Li ◽  
Yue-qiu He ◽  
Tao Fu ◽  
Li Lin ◽  
Feng Liu ◽  
...  

Zinnia elegans (syn. Zinnia violacea), known as common zinnia, is one of the most spectacular ornamental plants in the family Asteraceae. Zinnia plants are widely cultivated in China for their impressive range in flower colours and profuse bloom over a long period. In April 2019, Zinnia plants grown in Ningbo Botanical Garden (29°56′57″N, 121°36′20″E) were found to have many circular necrotic lesions. In the early infection stage, the lesions appeared as small circular specks which developed later into large spots (15 to 32 mm diameter). Typical symptoms appeared to be grayish white centers with a chlorotic edges and disease incidence reached approximately 80% of plants in the affected field. Moreover, the growth of Zinnia plants was seriously affected by the disease. To identify the causative pathogen associated with the disease, 10 symptomatic leaves were collected from ten different Zinnia plants. Leaf tissues were cut from the lesion margins, surface sterilized with 75% ethanol for 30 seconds and rinsed three times in sterile distilled water. The leaf tissues were then dipped into 10% sodium hypochlorite for 2-3 minutes, washed three times in distilled water and dried on a sterile filter paper. After drying, the surface-sterilized leaf discs were transferred to potato dextrose agar (PDA) plates and incubated at 28°C for 2 to 3 days under the 12 h photoperiod. A total of ten pure fungal isolates were obtained and all the isolates displayed the same colony structure. Afterwards, three pure strains were randomly selected (F1, F3 and F5) for further study. The fungal colonies showed gray to brownish aerial mycelia with pink-colored masses of conidia. Conidia were one-celled, hyaline, cylindrical to subcylindrical, spindle-shaped with obtuse ends, measuring from 15.6 to 17.3 × 4.6 to 5.1 μm with both ends rounded. These morphological characteristics were consistent with the description of Colletotrichum gloeosporioides complex (Weir et al. 2012). The identity of a representative isolate, F3, was confirmed by a multilocus approach. Genomic DAN of isolate F3 was extracted and partial sequences of actin (ACT), chitin synthase (CHS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal internal transcribed spacer (ITS), manganese-superoxide dismutase (SOD2) , glutamine synthatase (GS), beta-tubulin (TUB2) and calmodulin (CAL) were amplified and sequenced as previously described (Weir et al. 2012). These nucleotide sequences were deposited in GenBank (accession MN972436 to MN972440, and MT266559 to MT266561; all sequences in FASTA format are shown (Supplementary S1). BLAST analysis of ITS, ACT, CHS, GAPDH and GS sequences from the F3 isolate revealed similarity to C. gloeosporioides voucher strain ZH01 with 100%, 100%,99%, 99% and 99% identity, respectively. SOD, TUB2 and CAL sequences showed similarity to C. siamense with 100%, 100% and 100% identity, respectively. The phylogenetic trees were constructed by Maximum Likelihood method (ML) using JTT model implemented in the MEGA 7. Results inferred from the concatenated sequences (ACT, CHS, GAPDH, ITS, SOD, GS, TUB2 and CAL) placed the isolate F3 within the C. siamense cluster (Supplementary S2). To confirm pathogenicity of the fungus, Koch’s postulates were conducted by spraying 20 Zinnia plants (60-day-old) with a 1 × 106 conidia/ml suspension. Plants were maintained in the growth chamber at 25°C and 85% relative humidity. After 10 to 15 days, symptoms were observed on all inoculated leaves and resembled those observed in the field, whereas the control plants remained asymptomatic. Here, C. siamense was isolated only from the infected Zinnia leaves and identified by morphological and gene sequencing analyses. C. siamense has been reported in many crops in China (Yang et al. 2019; Chen et al. 2019; Wang et al. 2019). However, to our knowledge, this is the first report of anthracnose caused by C. siamense on Zinnia elegans in China. References Chen, X., Wang, T., Guo, H., Zhu, P. K., and Xu, L. 2019. First report of anthracnose of Camellia sasanqua caused by Colletotrichum siamense in China. Plant Dis. 103:1423-1423. Wang, Y., Qin, H. Y., Liu, Y. X., Fan, S. T., Sun, D., Yang, Y. M., Li, C. Y., and Ai, J. 2019. First report of anthracnose caused by Colletotrichum siamense on Actinidia arguta in China. Plant Dis. 103:372-373. Weir, B. S., Johnston, P. R., and Damm, U. 2012. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 73: 115-180. Yang, S., Wang, H. X., Yi, Y. J., and Tan, L. L. 2019. First report that Colletotrichum siamense causes leaf spots on Camellia japonica in China. Plant Dis. 103:2127-2127.


Plant Disease ◽  
2021 ◽  
Author(s):  
Edgar Edel Rodríguez-Palafox ◽  
Alfonso Vásquez-López ◽  
Guillermo Márquez-Licona ◽  
Nelson Bernardi Lima ◽  
Erika Lagunes-Fortiz ◽  
...  

Guava (Psidium guajava L.) is a small tree belonging to the Myrtaceae family and it is distributed worldwide in the tropical and subtropical areas. During the summer of 2019, symptoms of fruit anthracnose were observed on approx. 90% of 250 guava trees located in backyards in Juan Jose Rios, Sinaloa, Mexico. Lesions on guava fruit were irregular, necrotic, and sunken. On advanced infections, acervuli containing salmon-pink masses of spores were observed on the lesions. Twenty fruits were collected from 10 trees (2 fruits per tree). Colletotrichum-like colonies were consistently isolated on PDA medium and 20 monoconidial isolates were obtained. Four isolates were selected as representatives for morphological characterization, multilocus phylogenetic analysis, and pathogenicity tests. The isolates were deposited in the Culture Collection of Phytopathogenic Fungi of the Faculty of Agriculture of El Fuerte Valley at the Sinaloa Autonomous University (Accession nos. FAVF205–FAVF208). Colonies on PDA medium were flat with an entire margin, with abundant felty and white aerial mycelium, with pink conidial masses. Conidia (n= 100) were cylindrical, hyaline, aseptate, with ends rounded, and measuring 14.8 to 18.1 × 4.4 to 5.3 μm. Based on morphological features, the isolates were tentatively allocated in the C. gloeosporioides species complex (Weir et al. 2012). For molecular identification, genomic DNA was extracted, and the internal transcribed spacer (ITS) region (White et al. 1990), as well as partial sequences of actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-tubulin (TUB2), chitin synthase (CHS-1) and glutamine synthetase (GS) genes were amplified by PCR (Weir et al. 2012), and sequenced. A phylogenetic tree based on Bayesian inference and including published ITS, GAPDH, TUB2, ACT, CHS-1, and GS data for Colletotrichum species was constructed. The multilocus phylogenetic analysis clearly distinguished the four isolates FAVF205–FAVF208 as C. siamense separating it from all other species within the C. gloeosporioides species complex. The sequences were deposited in GenBank (accessions nos. ITS: MW598512–MW598515; GAPDH: MW595216–MW595219; TUB2: MW618012–MW618015; ACT: MW595208–MW595211; CHS-1: MW595212–MW595215; and GS: MW618008–MW618011). Pathogenicity of the four isolates was verified on 40 healthy guava fruits. Twenty fruits were wounded with a sterile toothpick (2 mm in depth) and a mycelial plug (6 mm of diameter) was placed on each wound. Ten fruits inoculated with a PDA plug without mycelial growth served as controls. The fruit was kept in a moist plastic chamber at 25°C for 7 days. Pathogenicity of each isolate was tested with both non-wound and wound inoculation methods. The experiments were repeated twice with similar results. All inoculated fruits developed sunken necrotic lesions 4 days after inoculation, whereas no symptoms were observed on the control fruits. The fungi were consistently re-isolated only from the diseased fruits, fulfilling Koch´s postulates. Colletotrichum siamense has been previously reported on guava fruit in India (Sharma et al. 2015). However, to our best knowledge, this is the first report of C. siamense causing fruit anthracnose on guava in Mexico. Therefore, it is necessary to explore the diversity of Colletotrichum species on guava in detail through subsequent phylogenetic studies as well as to monitor the distribution of this pathogen into other Mexican regions.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1383-1383 ◽  
Author(s):  
L. M. Rodriguez-Salamanca ◽  
T. B. Enzenbacher ◽  
J. M. Byrne ◽  
C. Feng ◽  
J. C. Correll ◽  
...  

In September 2010, celery plants with leaf cupping and petiole twisting were observed in commercial production fields located in Barry, Kent, Newago, and Van Buren Counties in Michigan. Long, elliptical lesions were observed on petioles but signs (mycelia, conidia, or acervuli) were not readily observed. Celery petioles were incubated in humid chambers (acrylic boxes with wet paper towels). After 24 h, conidia corresponding to the genus Colletotrichum were observed. Isolations were performed by excising pieces of celery tissue from the lesion margin and placing them on potato dextrose agar (PDA) amended with 30 ppm of rifampicin and 100 ppm of ampicillin. Plates were incubated at 21 ± 2°C under fluorescent light for 5 days. Fungal colony morphology was gray with salmon-colored masses of spores when viewed from above, and carmine when viewed from below. Isolates were single-spored and placed on 30% glycerol in –20°C, and cryoconservation media (20% glycerol, 0.04% yeast extract, 0.1% malt extract, 0.04% glucose, 0.02% K2HPO4) at –80°C. Conidia were 8.5 to 12.0 × 2.8 to 4.0 μm and straight fusiform in shape. Three isolates were confirmed as C. acutatum sensu lato based on sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA and the 1-kb intron of the glutamine synthase gene (3), both with 100% similarity with Glomerella acutata sequences. Sequences were submitted to GenBank (Accession Nos. JQ951599 and JQ951600 for ITS and GS, respectively). Additionally, C. acutatum specific primer CaIntg was used in combination with the primer ITS4 on 54 isolates from symptomatic celery plants, obtaining the expected 490-pb fragment (1). Koch's postulates were completed by inoculating 4-week-old celery seedlings of cultivars Sabroso, Green Bay, and Dutchess using three plants per cultivar. Prior to inoculation, seedlings were incubated for 16 h in high relative humidity (≥95%) by enclosing the plants in humid chambers. Seven-day-old C. acutatum s. l. colonies were used to prepare the inoculum. Seedlings were spray-inoculated with a C. acutatum s. l. conidial suspension of 1 × 106 conidia/ml in double-distilled water plus Tween 0.01%. Two control seedlings per cultivar were sprayed with sterile, double-distilled water plus 0.01% Tween. Plants were enclosed in bags for 96 h post inoculation and incubated in a greenhouse at 27°C by day/20°C by night with a 16-h photoperiod. Leaf curling was observed on all inoculated plants of the three cultivars 4 days after inoculation (DAI). Petiole lesions were observed 14 to 21 DAI. Conidia were observed in lesions after incubation in high humidity at 21 ± 2°C for 24 to 72 h. Symptomatic tissue was excised and cultured onto PDA and resulted in C. acutatum colonies. Control plants remained symptomless. C. acutatum (4) and C. orbiculare (2) were reported to cause celery leaf curl in Australia in 1966 (2,4). To our knowledge, this is the first report of C. acutatum s. l. infecting celery in Michigan. References: (1) A. E. Brown et al. Phytopathology 86:523, 1996. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., USDA-ARS. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , 10 September 2010. (3) J. C. Guerber et al. Mycologia 95:872, 2003. (4) D. G. Wright and J. B. Heaton. Austral. Plant Pathol. 20:155, 1991.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1280-1280
Author(s):  
B. S. Kim ◽  
K. S. Baek ◽  
C. H. Pak ◽  
J. H. Park ◽  
H. D. Shin

New Guinea impatiens, Impatiens hawkeri W. Bull, is widely cultivated as a potted plant and garden plant. In July 2013, hundreds of young plants (cv. Fanfare) showing symptoms of leaf spot with approximately 50% incidence were found in polyethylene tunnels in Yongin City, Korea. Leaf spots were circular to oblong, reaching 6 mm or more in diameter. The spots were initially uniformly brown to reddish brown, turning gray with reddish brown margin. Diseased plants defoliated prematurely and were abandoned without marketing due to signs of discoloration and yellowing on leaves. A cercosporoid fungus was consistently observed in association with disease symptoms. Stromata were brown, small, and composed of a few swollen hyphal cells. Conidiophores were emerging through the cuticle, fasciculate (n = 2 to 20), olivaceous to brown, paler toward the apex, straight to mildly curved, geniculate, 30 to 260 μm long, 3.5 to 5 μm wide, 1- to 6-septate, and with conspicuous conidial scars. Conidia were hyaline and acicular. Smaller conidia were straight and longer conidia were mildly curved. Conidia were subacute to obtuse at the apex, truncate to obconically truncate at the base, 2- to 18-septate, 30 to 320 × 3.5 to 5.5 μm, and with thickened, darkened hila at the base. Morphological characteristics of the fungus were consistent with the previous reports of Cercospora fukushiana (Matsuura) W. Yamam. (1). Voucher specimens were housed in the Korea University herbarium (KUS). An isolate from KUS-F27438 was deposited in the Korean Agricultural Culture Collection (Accession No. KACC47640). Fungal DNA was extracted with DNeasy Plant Mini Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 (4) and sequenced. The resulting sequence of 497 bp was deposited in GenBank (Accession No. KJ620981). This showed >99% similarity with sequence of C. fukushiana (EF600954) on I. balsamina from Korea. Isolate of KACC47640 was used in the pathogenicity tests. Hyphal suspensions were prepared by grinding 3-week-old colonies grown on PDA with distilled water using a mortar and pestle. Five plants were inoculated with hyphal suspensions and five plants were sprayed with sterile distilled water. The plants were covered with plastic bags to maintain a relative humidity of 100% for 24 h and then transferred to a 25 ± 2°C greenhouse with a 12-h photoperiod. Typical symptoms of necrotic spots appeared on the inoculated leaves 10 days after inoculation, and were identical to the symptoms observed in the field. C. fukushiana was re-isolated from symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on water-inoculated control plants. Previously, leaf spots of Impatiens spp. associated with C. apii, C. balsaminae, and C. fukushiana have been reported (1,2,3). To our knowledge, this is the first report of C. fukushiana on I. hawkeri in Korea. Our observations in the nurseries of I. hawkeri suggest that low humidity with good ventilation as well as plant hygiene in greenhouses might be main strategies for preventing this disease. References: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Ithaca, NY, 1953. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., online publication, ARS, USDA, retrieved March 25, 2014. (3) J. M. Soares et al. Plant Dis. 93:1214, 2009. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1654-1654 ◽  
Author(s):  
A. L. Vu ◽  
M. M. Dee ◽  
J. Zale ◽  
K. D. Gwinn ◽  
B. H. Ownley

Knowledge of pathogens in switchgrass, a potential biofuels crop, is limited. In December 2007, dark brown to black irregularly shaped foliar spots were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) on the campus of the University of Tennessee. Symptomatic leaf samples were surface-sterilized (95% ethanol, 1 min; 20% commercial bleach, 3 min; 95% ethanol, 1 min), rinsed in sterile water, air-dried, and plated on 2% water agar amended with 3.45 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). A sparsely sporulating, dematiaceous mitosporic fungus was observed. Fungal plugs were transferred to surface-sterilized detached ‘Alamo’ leaves on sterile filter paper in a moist chamber to increase spore production. Conidia were ovate, oblong, mostly straight to slightly curved, and light to olive-brown with 3 to 10 septa. Conidial dimensions were 12.5 to 17 × 27.5 to 95 (average 14.5 × 72) μm. Conidiophores were light brown, single, multiseptate, and geniculate. Conidial production was polytretic. Morphological characteristics and disease symptoms were similar to those described for Bipolaris oryzae (Breda de Haan) Shoemaker (2). Disease assays were done with 6-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized in 50% bleach. Nine 9 × 9-cm square pots with approximately 20 plants per pot were inoculated with a mycelial slurry (due to low spore production) prepared from cultures grown on potato dextrose agar for 7 days. Cultures were flooded with sterile water and rubbed gently to loosen mycelium. Two additional pots were inoculated with sterile water and subjected to the same conditions to serve as controls. Plants were exposed to high humidity by enclosure in a plastic bag for 72 h. Bags were removed, and plants were incubated at 25/20°C with 50 to 60% relative humidity. During the disease assay, plants were kept in a growth chamber with a 12-h photoperiod of fluorescent and incandescent lighting. Foliar leaf spot symptoms appeared 5 to 14 days post-inoculation for eight of nine replicates. Control plants had no symptoms. Symptomatic leaf tissue was processed and plated as described above. The original fungal isolate and the pathogen recovered in the disease assay were identified using internal transcribed spacer (ITS) region sequences. The ITS region of rDNA was amplified with PCR and primer pairs ITS4 and ITS5 (4). PCR amplicons of 553 bp were sequenced, and sequences from the original isolate and the reisolated pathogen were identical (GenBank Accession No. JQ237248). The sequence had 100% nucleotide identity to B. oryzae from switchgrass in Mississippi (GU222690, GU222691, GU222692, and GU222693) and New York (JF693908). Leaf spot caused by B. oryzae on switchgrass has also been described in North Dakota (1) and was seedborne in Mississippi (3). To our knowledge, this is the first report of B. oryzae from switchgrass in Tennessee. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/, 28 June 2012. (2) J. M. Krupinsky et al. Can. J. Plant Pathol. 26:371, 2004. (3) M. Tomaso-Peterson and C. J. Balbalian. Plant Dis. 94:643, 2010. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. M. A. Innis et al. (eds), Acad. Press, San Diego, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yujie Zhang ◽  
Wenxiu Sun ◽  
Ping Ning ◽  
Tangxun Guo ◽  
SuiPing Huang ◽  
...  

Papaya (Carica papaya L.) is a rosaceous plant widely grown in China, which is economically important. Anthracnose caused by Colletotrichum sp. is an important postharvest disease, which severely affects the quality of papaya fruits (Liu et al., 2019). During April 2020, some mature papaya fruits with typical anthracnose symptoms were observed in Fusui, Nanning, Guangxi, China with an average of 30% disease incidence (DI) and over 60% DI in some orchards. Initial symptoms of these papayas appeared as watery lesions, which turned dark brown, sunken, with a conidial mass appearing on the lesions under humid and warm conditions. The disease severity varied among fruits, with some showing tiny light brown spots, and some ripe fruits presenting brownish, rounded, necrotic and depressed lesions over part of their surface. Samples from two papaya plantations (107.54°E, 22.38°N) were collected, and brought to the laboratory. Symptomatic diseased tissues were cut into 5 × 5 mm pieces, surface sterilized with 2% (v/v) sodium hypochlorite for 1 minute, and rinsed three times with sterilized water. The pieces were then placed on potato dextrose agar (PDA). After incubation at 25°C in the dark for one week, colonies with uniform morphology were obtained. The aerial mycelium on PDA was white on top side, and concentric rings of salmon acervuli on the underside. A gelatinous layer of spores was observed on part of PDA plates after 7 days at 28°C. The conidia were elliptical, aseptate and hyaline (Zhang et al., 2020). The length and width of 60 conidia were measured for each of the two representative isolates, MG2-1 and MG3-1, and these averaged 13.10 × 5.11 μm and 14.45 × 5.95 μm. DNA was extracted from mycelia of these two isolates with the DNA secure Plant Kit (TIANGEN, Biotech, China). The internal transcribed spacer (ITS), partial actin (ACT), calmodulin (CAL), chitin synthase (CHS), β-tubulin 2 (TUB2) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) regions were amplified by PCR and sequenced. The sequences were deposited into GenBank with accessions MT904003, MT904004, and MT898650 to MT898659. BLASTN analyses against the GenBank database showed that they all had over 99% identity to the type strain of Colletotrichum siamense isolate ICMP 18642 (GenBank accession numbers JX010278, GQ856775, JX009709, GQ856730, JX010410, JX010019) (Weir et al., 2012). A phylogenetic tree based on the combined ITS, ACT, CAL, CHS, TUB2 and GAPDH sequences using the Neighbor-joining algorithm also showed that the isolates were C. siamense. Pathogenicity tests were conducted on 24 mature, healthy and surface-sterilized papaya fruits. On 12 papaya fruits, three well separated wounded sites were made for inoculation, and for each wounded site, six adjacent pinhole wounds were made in a 5-mm-diameter circular area using a sterilized needle. A 10 µl aliquot of 1 × 106 conidia/ml suspension of each of the isolates (MG2-1 and MG3-1) was inoculated into each wound. For each isolate, there were six replicate fruits. The control fruits were inoculated with sterile distilled water. The same inoculation was applied to 12 non-wound papaya fruits. Fruits were then placed in boxes which were first washed with 75% alcohol and lined with autoclaved filter paper moistened with sterilized distilled water to maintain high humidity. The boxes were then sealed and incubated at 28°C. After 10 days, all the inoculated fruits showed symptoms, while the fruits that were mock inoculated were without symptoms. Koch's postulates were fulfilled by re-isolation of C. siamense from diseased fruits. To our knowledge, this is the first report of C. siamense causing anthracnose of papaya in China. This finding will enable better control of anthracnose disease caused by C. siamense on papaya.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 287-287
Author(s):  
K. S. Han ◽  
J. H. Park ◽  
S. E. Cho ◽  
H. D. Shin

Pachysandra terminalis Siebold & Zucc., known as Japanese pachysandra, is a creeping evergreen perennial belonging to the family Buxaceae. In April 2011, hundreds of plants showing symptoms of leaf blight and stem canker with nearly 100% incidence were found in a private garden in Suwon, Korea. Plants with the same symptoms were found in Seoul in May and Hongcheon in August. Affected leaves contained tan-to-yellow brown blotches. Stem and stolon cankers first appeared as water soaked and developed into necrotic lesions. Sporodochia were solitary, erumpent, circular, 50 to 150 μm in diameter, salmon-colored, pink-orange when wet, and with or without setae. Setae were hyaline, acicular, 60 to 100 μm long, and had a base that was 4 to 6 μm wide. Conidiophores were in a dense fascicle, not branched, hyaline, aseptate or uniseptate, and 8 to 20 × 2 to 3.5 μm. Conidia were long, ellipsoid to cylindric, fusiform, rounded at the apex, subtruncate at the base, straight to slightly bent, guttulate, hyaline, aseptate, 11 to 26 × 2.5 to 4.0 μm. A single-conidial isolate formed cream-colored colonies that turned into salmon-colored colonies on potato dextrose agar (PDA). Morphological and cultural characteristics of the fungus were consistent with previous reports of Pseudonectria pachysandricola B.O. Dodge (1,3,4). Voucher specimens were housed at Korea University (KUS). Two isolates, KACC46110 (ex KUS-F25663) and KACC46111 (ex KUS-F25683), were accessioned in the Korean Agricultural Culture Collection. Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced using ABI Prism 337 automatic DNA sequencer (Applied Biosystems, Foster, CA). The resulting sequence of 487 bp was deposited in GenBank (Accession No. JN797821). This showed 100% similarity with a sequence of P. pachysandricola from the United States (HQ897807). Isolate KACC46110 was used in pathogenicity tests. Inoculum was prepared by harvesting conidia from 2-week-old cultures on PDA. Ten young leaves wounded with needles were sprayed with conidial suspensions (~1 × 106 conidia/ml). Ten young leaves that served as the control were treated with sterile distilled water. Plants were covered with plastic bags to maintain a relative humidity of 100% at 25 ± 2°C for 24 h. Typical symptoms of brown spots appeared on the inoculated leaves 4 days after inoculation and were identical to the ones observed in the field. P. pachysandricola was reisolated from 10 symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in the United States, Britain, Japan, and the Czech Republic (2,3), but not in Korea. To our knowledge, this is the first report of P. pachysandricola on Pachysandra terminalis in Korea. Since this plant is popular and widely planted in Korea, this disease could cause significant damage to nurseries and the landscape. References: (1) B. O. Dodge. Mycologia 36:532, 1944. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , September 24, 2011. (3) I. Safrankova. Plant Prot. Sci. 43:10, 2007. (4) W. A. Sinclair and H. H. Lyon. Disease of Trees and Shrubs. 2nd ed. Cornell University Press, Ithaca, NY, 2005.


Sign in / Sign up

Export Citation Format

Share Document