scholarly journals First Detection of Virulence in Puccinia triticina to Resistance Genes Lr27 + Lr31 Present in Durum Wheat in Mexico

Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 110-110 ◽  
Author(s):  
J. Huerta-Espino ◽  
R. P. Singh ◽  
S. A. Herrera-Foessel ◽  
J. B. Pérez-López ◽  
P. Figueroa-López

Leaf rust caused by Puccinia triticina Eriks. was observed during the 2007–2008 crop season in the state of Sonora, Mexico on previously resistant durum wheat (Triticum turgidum L.) cvs. Jupare C2001 (Lr27 + 31) and Banamichi C2004. Single uredinial isolates were made from disease samples collected in the field and tested mostly on ‘Thatcher’ differentials at seedling or adult-plant stages (1). The isolates were identified as a new race, BBG/BP, resembling race BBG/BN predominant on durum wheat (2), but with additional virulences to resistance genes Lr27 + Lr31 in Gatcher and adult-plant resistance gene Lr12. The new race was also identified in samples collected from durum wheat in the State of Nuevo Leon during the same season. The avirulence/virulence formula of race BBG/BP is Lr1, 2a, 2b, 2c, 3, 3ka, 3bg, 9, 13, 14a, 15, 16, 17, 18, 19, 21, 22a, 24, 25, 26, 28, 29, 30, 32, 35, 37/Lr10, 11, 12, 14b, 20, 23, 27 + 31, 33. Although virulences to Lr27 + Lr31 and Lr12 is known to occur in P. triticina races predominant on bread wheat (T. aestivum L.) (1), to our knowledge, this is the first report of such virulences in the pathogen population on durum wheat. Pure isolates of race BBG/BP are stored in the CIMMYT leaf rust collection. References: (1) R. P. Singh. Plant Dis. 75:790, 1991. (2) R. P. Singh et al. Plant Dis. 88:703, 2004.

2014 ◽  
Vol 104 (12) ◽  
pp. 1322-1328 ◽  
Author(s):  
Alexander Loladze ◽  
Dhouha Kthiri ◽  
Curtis Pozniak ◽  
Karim Ammar

Leaf rust, caused by Puccinia triticina, is one of the main fungal diseases limiting durum wheat production. This study aimed to characterize previously undescribed genes for leaf rust resistance in durum wheat. Six different resistant durum genotypes were crossed to two susceptible International Maize and Wheat Improvement Center (CIMMYT) lines and the resulting F1, F2, and F3 progenies were evaluated for leaf rust reactions in the field and under greenhouse conditions. In addition, allelism tests were conducted. The results of the study indicated that most genotypes carried single effective dominant or recessive seedling resistance genes; the only exception to this was genotype Gaza, which carried one adult plant and one seedling resistance gene. In addition, it was concluded that the resistance genes identified in the current study were neither allelic to LrCamayo or Lr61, nor were they related to Lr3 or Lr14a, the genes that already are either ineffective or are considered to be vulnerable for breeding purposes. A complicated allelic or linkage relationship between the identified genes is discussed. The results of the study will be useful for breeding for durable resistance by creating polygenic complexes.


Plant Disease ◽  
2005 ◽  
Vol 89 (8) ◽  
pp. 809-814 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
J. Yuen ◽  
A. Djurle

Leaf rust, caused by Puccinia triticina, has become an important disease of durum wheat (Triticum turgidum) in Mexico since the detection in 2001 of BBG/BN, a new race virulent on all common cultivars and on more than 80% of CIMMYT's durum wheat collection. We investigated the genetic basis and diversity of resistance in nine durum genotypes that are highly resistant to the new race. These resistant durums were crossed with the susceptible cv. Atil C2000 and intercrossed in a half diallel arrangement. Five diverse sources of resistance were identified by evaluating parents, F1, F2, and F3 populations in greenhouse and/or field trials under artificial epidemics of race BBG/BN. The same pair of partially dominant complementary genes determined resistance in Jupare C2001, Hualita, and Pohowera. Somateria and Llareta INIA shared the same dominant resistance gene, whereas a partially dominant gene conferred resistance in two sister lines, Guayacan 2 and Guayacan INIA. A different partially dominant gene present in Storlom was linked in repulsion to another partially dominant gene in Camayo. These diverse resistance genes can be used effectively to control leaf rust, preferably by deploying them in combinations.


Plant Disease ◽  
2004 ◽  
Vol 88 (7) ◽  
pp. 703-708 ◽  
Author(s):  
R. P. Singh ◽  
J. Huerta-Espino ◽  
W. Pfeiffer ◽  
P. Figueroa-Lopez

Durum wheat (Triticum turgidum var. durum) is the main irrigated winter crop in northwestern Mexico. Historically, leaf rust, caused by Puccinia triticina, had not induced significant losses to durum production in the area until 2001. That year, a new race, designated as BBG/BN, was detected that caused the most widely grown cultivar, Altar C84, which had remained resistant for 16 years, to become susceptible. Other recommended cultivars also became either moderately susceptible or susceptible. Detailed characterization of avirulence/virulence characteristics on Lr genes indicated that this race possibly did not evolve from the older races, but may have been introduced. Rust epidemics during the 2000-2001, 2001-2002, and 2002-2003 crop seasons have caused estimated losses of at least US$32 million. Although a majority of cultivars from 31 different countries, including the United States and Canada, and most of CIMMYT's durum wheat germ plasm were highly susceptible, diversity for both race-specific resistance and moderate levels of slow rusting resistance were identified. Jupare C2001, a resistant cultivar released in 2001, showed high levels of resistance and negligible losses in grain yield in a trial where Altar C84 suffered over 27% losses.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 611-611 ◽  
Author(s):  
T. Terefe ◽  
Z. A. Pretorius ◽  
C. M. Bender ◽  
B. Visser ◽  
L. Herselman ◽  
...  

A new race of Puccinia triticina was collected from common wheat (Triticum aestivum) in the Eastern and Western Cape provinces during the annual rust survey in 2009. Six single-pustule isolates from a field collection, which were shown to be a new race in preliminary analyses, were inoculated onto seedlings of 16 Thatcher (Tc) near-isogenic differential lines (1) and other tester lines with known Lr genes. Standard procedures for inoculation, incubation, and rust evaluation were followed (4) and all infection studies were repeated. The low infection type of Lr18 was confirmed at 18°C. All six isolates were avirulent (infection types [ITs] 0; to 2) to Lr1, 2a, 2c, 9, 11, 16, 18, and 24 and virulent (ITs 3 to 4) to Lr3, 3ka, 10, 14a, 17, 26, 30, B, and Tc (control). The new race, named 3SA145 according to the ARC-Small Grain Institute notation, corresponds to race CCPS in the North American system (1). On the basis of seedling ITs of the extended Lr gene set, 3SA145 was avirulent (ITs 0; to 22+) to Lr2b, 19, 21, 23, 25, 28, 29, 32, 36 (E84081), 38, 45, 47 (KS90H450), 50 (KS96WGRC36), 51 (R05), and 52 and virulent to Lr3bg, 15, 20 (Thew), 27+31 (Gatcher), and 33. Lines containing the adult plant resistance (APR) genes Lr12 (RL6011, IT 3++), Lr13 (CT263, IT 3), Lr22b (Tc, IT 4), and Lr37 (RL6081, IT 3) were susceptible in the adult stage to 3SA145, whereas lines with the APR genes Lr22a (RL6044, IT ;1), Lr34 (RL6058, IT Z1), and Lr35 (RL6082, IT ;1) were resistant in controlled infection studies in a greenhouse. A control, the common race (3SA133), was virulent only on Tc adult plants. In seedlings, 3SA133 was avirulent to Lr15, 17, 26, and 27+31, but unlike 3SA145, it was virulent to Lr1, 2c, 11, 18, 24, and 28. Races 3SA133 and 3SA145 did not differ in their virulence to the remaining seedling genes. Virulence to Lr37 has been reported in several countries, including Australia, Canada, Uruguay, and the United States (1,2). Prior to the detection of 3SA145, adult plants of RL6081 were resistant to all wheat leaf rust races in South Africa. In 2009, however, RL6081 showed severity levels of up to 30S at certain Western Cape trap plot sites. Of 124 South African bread wheat cultivars and advanced breeding lines tested at the seedling stage, 3SA145 was virulent to 48, whereas 3SA133 was virulent to 36 entries. A further six entries were heterogeneous in their reaction to 3SA145. In adult plant infection studies of 48 South African spring wheats in a greenhouse, 19 were susceptible (flag leaf IT ≥3) and 22 were resistant to 3SA145. Seven entries showed a Z3 flag leaf IT indicating adult plant resistance. According to a simple sequence repeat (SSR) study using 17 primer-pair combinations described by Szabo and Kolmer (3), 3SA145 showed 30% homology with the dominant South African races. Although virulence to Lr12 and Lr13 has been known in different leaf rust races in South Africa, to our knowledge, this is the first report of combined virulence to Lr12, 13, and 37. The SSR data and unique avirulence/virulence profile suggest that 3SA145 may be an exotic introduction to South Africa. References: (1) J. A. Kolmer et al. Plant Dis. 89:1201, 2005. (2) B. McCallum and P. Seto-Goh. Can. J. Plant Pathol. 31:80, 2009. (3) L. Szabo and J. Kolmer. Mol. Ecol. Notes 7:708, 2007. (4) T. Terefe et al. S. Afr. J. Plant Soil 26:51, 2009.


2020 ◽  
pp. PHYTO-03-20-007
Author(s):  
J. A. Kolmer ◽  
M. K. Turner ◽  
M. N. Rouse ◽  
J. A. Anderson

AC Taber is a hard red spring wheat cultivar that has had long-lasting resistance to the leaf rust fungus Puccinia triticina. The objective of this study was to determine the chromosome location of the leaf rust resistance genes in AC Taber. The leaf rust-susceptible cultivar Thatcher was crossed with AC Taber to develop an F6 recombinant inbred line (RIL) population. The RILs and parents were evaluated for segregation of leaf rust resistance in five field plot tests and in two seedling tests to race BBBDB of P. triticina. A genetic map of the RIL population was developed using 90,000 single nucleotide polymorphism markers with the Illumina Infinium iSelect 90K wheat bead array. Quantitative trait loci (QTLs) with significant effects for lower leaf rust severity in the field plot tests were found on chromosomes 2BS and 3BS. The same QTLs also had significant effects for lower infection type in seedlings to leaf rust race BBBDB. The gene on 2BS was the adult plant resistance gene Lr13, and the gene on 3BS mapped to the same region as the adult plant resistance gene Lr74 and other QTLs for leaf rust resistance. Kompetitive allele-specific PCR assay markers linked to the 2BS and 3BS regions were developed and should be useful for marker-based selection of these genes.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Caixia Lan ◽  
Zhikang Li ◽  
Sybil A. Herrera-Foessel ◽  
Julio Huerta-Espino ◽  
Bhoja R. Basnet ◽  
...  

Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1111-1118 ◽  
Author(s):  
J. X. Zhang ◽  
R. P. Singh ◽  
J. A. Kolmer ◽  
J. Huerta-Espino ◽  
Y. Jin ◽  
...  

The CIMMYT-developed spring wheat ‘Brambling’ has a high level of adult-plant resistance (APR) to leaf rust caused by Puccinia triticina. Our objectives were to determine the genetic basis of resistance in seedlings and adult plants and the magnitude of genotype × environment effects on the expression of APR. Brambling was crossed with spring wheat ‘Jupateco 73S’ that is highly susceptible to current predominant P. triticina races in Mexico and the United States. The F1, F2:3, F4:5, F4:6, and F5:7 recombinant inbred lines (RILs) were evaluated under artificial field epidemics in Mexico and St. Paul, MN. The RILs also were tested with five races of P. triticina in greenhouse seedling experiments. A DNA marker was used to postulate the presence of slow-rusting gene Lr34 in the RILs. F1 data suggested strong dominant effect of the APR genes in Brambling. The proportion of homozygous susceptible lines in each generation indicated the presence of three effective resistance genes in adult plants of Brambling in tests in Mexico and three or four genes in tests in St. Paul. The RILs segregated for seedling genes Lr14a and Lr23 and adult-plant slow-rusting gene Lr34 derived from Brambling and Lr17a from Jupateco 73S. Gene Lr23 conditioned APR to P. triticina races present in the St. Paul nursery and accounted for the additional effective gene at this location. Expression of APR was influenced by the environment in the RILs, even though Brambling displayed a consistent response, indicating that stability of APR can be achieved by combinations of slow-rusting resistance genes.


2022 ◽  
Vol 12 ◽  
Author(s):  
Firdissa E. Bokore ◽  
Ron E. Knox ◽  
Colin W. Hiebert ◽  
Richard D. Cuthbert ◽  
Ron M. DePauw ◽  
...  

The hexaploid spring wheat cultivar, Carberry, was registered in Canada in 2009, and has since been grown over an extensive area on the Canadian Prairies. Carberry has maintained a very high level of leaf rust (Puccinia triticina Eriks.) resistance since its release. To understand the genetic basis of Carberry’s leaf rust resistance, Carberry was crossed with the susceptible cultivar, Thatcher, and a doubled haploid (DH) population of 297 lines was generated. The DH population was evaluated for leaf rust in seven field environments at the adult plant stage. Seedling and adult plant resistance (APR) to multiple virulence phenotypes of P. triticina was evaluated on the parents and the progeny population in controlled greenhouse studies. The population was genotyped with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, and quantitative trait loci (QTL) analysis was performed. The analysis using field leaf rust response indicated that Carberry contributed nine QTL located on chromosomes 1B, 2B (2 loci), 2D, 4A, 4B, 5A, 5B, and 7D. The QTL located on 1B, 2B, 5B, and 7D chromosomes were observed in two or more environments, whereas the remainder were detected in single environments. The resistance on 1B, detected in five environments, was attributed to Lr46 and on 7D, detected in seven environments to Lr34. The first 2B QTL corresponded with the adult plant gene, Lr13, while the second QTL corresponded with Lr16. The seedling analysis showed that Carberry carries Lr2a, Lr16, and Lr23. Five epistatic effects were identified in the population, with synergistic interactions being observed for Lr34 with Lr46, Lr16, and Lr2a. The durable rust resistance of Carberry is attributed to Lr34 and Lr46 in combination with these other resistance genes, because the resistance has remained effective even though the P. triticina population has evolved virulent to Lr2a, Lr13, Lr16, and Lr23.


Plant Disease ◽  
2017 ◽  
Vol 101 (10) ◽  
pp. 1729-1737 ◽  
Author(s):  
Takele Weldu Gebrewahid ◽  
Zhan-Jun Yao ◽  
Xiao-Cui Yan ◽  
Pu Gao ◽  
Zai-Feng Li

Puccinia triticina Eriks. (Pt), the causal agent of wheat (Triticum aestivum L.) leaf rust, is the most widespread disease of common wheat worldwide. In the present study, 83 wheat cultivars from three provinces of China and 36 tester lines with known leaf rust resistance (Lr) genes were inoculated in the greenhouse with 18 Pt pathotypes to identify seedling effective Lr genes. Field tests were also performed to characterize slow leaf rusting responses at the adult plant growth stage in Baoding and Zhoukou in the 2014–15 and 2015–16 cropping seasons. Twelve Lr genes, viz. Lr1, Lr26, Lr3ka, Lr11, Lr10, Lr2b, Lr13, Lr21, Lr34, Lr37, Lr44, and Lr46 either singly or in combination were identified in 41 cultivars. Known Lr genes were not detected in the remaining 42 cultivars. The most commonly identified resistance genes were Lr26 (20 cultivars), Lr46 (18 cultivars), and Lr1 (eight cultivars). Less frequently detected genes included Lr13, Lr34, and Lr37 (each present in four cultivars), Lr10 (three cultivars), and Lr3ka and Lr44 (each in two cultivars). Evidence for the presence of genes Lr11, Lr2b, and Lr21 (each in one cultivar) was also obtained. Seventeen cultivars were found to have slow rusting resistance in both field growing seasons.


Sign in / Sign up

Export Citation Format

Share Document