scholarly journals First Report of Powdery Mildew Caused by Podosphaera xanthii on Sechium edule in the United States

Plant Disease ◽  
2009 ◽  
Vol 93 (12) ◽  
pp. 1348-1348 ◽  
Author(s):  
R. Singh ◽  
D. M. Ferrin ◽  
M. C. Aime

Sechium edule (Jacq.) Sw., also known as mirliton or chayote, is a perennial, monoecious, cucurbitaceous plant native to Mexico and Central America. It is cultivated worldwide for a variety of uses (4). Mirliton fruit is rich in carbohydrates, has 16 amino acids, and is a traditional staple in New Orleans, LA. During the spring of 2009, the LSU AgCenter's Plant Disease Diagnostic Clinic received diseased mirliton plants from a small commercial grower in New Orleans. Symptoms included yellow, irregular spots on both surfaces of the leaves. Microscopic examination revealed the presence of powdery mildew conidia and conidiophores. Initially, white, cottony mycelial colonies were present on the abaxial surface, but as the disease progressed, white, cottony colonies developed on the adaxial surface, the spots coalesced, and the entire leaf turned yellow and necrotic. Conidia were hyaline, ovoid, borne in long chains with crenate edges, and measured 25.6 to 36.6 μm long (mean = 31.2) × 14.6 to 18.3 μm wide (mean = 17.1). Conidia contained fibrosin bodies and produced a lateral germ tube with a simple appressorium. Conidiophores were erect, simple, unbranched, and measured 54.9 to 76.9 μm long (mean = 66.4) × 11.0 to 14.6 μm wide (mean = 12.9). The cylindrical foot cell had a simple base with basal septum adjacent to the mycelium. No teleomorph was observed. Morphologically, this powdery mildew fits either Podosphaera fusca or P. xanthii so DNA analysis was conducted. We designed Podosphaera-specific primers PFITS-F (5′-CCAACTCGTGCTGTGAGTGT-3′) and PF5.8-R (5′-TGTTGGTTTCTTTTCCTCCG-3′) to amplify and sequence the internal transcribed spacer region (ITS) of the nuclear rDNA. The 331-bp sequence (GenBank Accession No. GQ902939) was identical with haplotype 27 of P. fusca (GenBank Accession No. AB040324) (3), which is now called P. xanthii (1). Pathogenicity tests were conducted by pressing infected leaves against healthy leaves of two vines. A noninoculated vine served as a control. Plants were maintained in a greenhouse at 30°C. Five days after inoculation, yellow, irregular spots appeared on the inoculated vines and white, powdery mildew colonies appeared on the abaxial surface. Spots coalesced and the entire leaf turned yellow 8 days after inoculation and necrotic 12 days after inoculation. No symptoms developed on the controls. On the basis of DNA sequence data, this powdery mildew is identified as P. xanthii sensu (1). Erysiphe cichoracearum has been previously reported to cause powdery mildew on mirlitons in Florida and Hawaii (2). To our knowledge, this is the first report of powdery mildew caused by P. xanthii on mirliton in the United States. A voucher specimen has been deposited in the Bernard Lowy Mycological Herbarium (LSUM 185359). References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:31, 2000. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, SMML, Online publication. USDA-ARS, 2009. (3) T. Hirata et al. Can. J. Bot. 78:1521, 2000. (4) M. Janssens et al. Tropical Crops. ARTS; Field and Vegetable Crops, PTS 130. Bonn, Germany, 2002/03.

Plant Disease ◽  
2000 ◽  
Vol 84 (9) ◽  
pp. 1048-1048 ◽  
Author(s):  
G. S. Saenz ◽  
S. T. Koike ◽  
N. Shishkoff

Gray-leaved Euryops (Euryops pectinatus Cass., Asteraceae) is an evergreen shrub that is widely planted in landscapes in the United States. In the fall of 1999, powdery mildew was observed on E. pectinatus planted in landscapes in Redlands (San Bernardino County), CA. Symptoms consisted only of slight cupping of leaves. Fungal growth was observed on stems, leaves, petioles, and pedicels and was ectophytic and amphigenous. The white mycelium was patchy to effuse. Hyphal appressoria were indistinct (1). Conidiophore foot cells were cylindric and sometimes were tapered toward or constricted at the base. Foot cells measured 30 to 50 by 10 to 12 μm and were followed by one to two shorter cells. Conidia were cylindric to slightly doliform, borne in chains of two to three, and measured 26 to 38 by 14 to 18 μm. Conidial length to width ratios ranged from 1.7 to 2.4. Catenate conidia had crenate edge lines (3). Conidia possessed conspicuous fibrosin bodies and from their sides produced short germ tubes without appressoria. Cleistothecia were not observed. Based on these characters, the fungus was identified as Podosphaera fusca (Fr.) U. Braun & N. Shishkoff (Podosphaera sect. Sphaerotheca) (1,2). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of healthy E. pectinatus plants. Plants were incubated in a humidity chamber at 22 to 24°C and after 12 to 14 days powdery mildew colonies developed. E. pectinatus cv. Viridis, a cultivar that lacks the extensive pubescence of E. pectinatus, also developed disease when inoculated. This appears to be the first report of powdery mildew on E. pectinatus in North America. A voucher specimen has been deposited into the University of California Herbarium (accession # UC1738635). P. fusca was also observed on cv. Viridis in a nursery in New York in 1999. It is unclear where this pathogen originated. P. fusca parasitizes a large number of asteraceous species including dandelion (Taraxacum officinalis) and sowthistle (Sonchus spp.) weeds, which occur in the area and sometimes are infected with powdery mildew. The Euryops powdery mildew pathogen may be a race that is different than those found on other composites in the United States. The fungus was observed on plants in shaded areas but not on plants in full sun. References: (1) U. Braun. Nova Hedwigia 89:1, 1987. (2) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (3) H. D. Shin and Y. J. La. Mycotaxon 46:445, 1993.


Plant Disease ◽  
2005 ◽  
Vol 89 (11) ◽  
pp. 1242-1242 ◽  
Author(s):  
T. Souissi ◽  
D. K. Berner ◽  
E. L. Smallwood

Silybum eburneum Coss. & Durieu. (ivory thistle) and S. marianum (L.) Gaertn. (milk thistle) are dominant, invasive weeds in northern Tunisia (1). S. marianum is also invasive in the United States and targeted for biological control. The smut fungus Microbotryum silybum Vánky & Berner is a naturally occurring pathogen of S. marianum in Greece (2) but not in Tunisia or the United States. To assess the safety of the fungus for biological control in the United States, plants related to S. marianum were evaluated for susceptibility to M. silybum in the quarantine facility of the Foreign Disease-Weed Science Research Unit (FDWSRU), USDA/ARS, Fort Detrick, MD. Because of the close genetic relationship of S. eburneum to S. marianum, both were tested for susceptibility under greenhouse conditions at the FDWSRU. All inoculations were done by placing 5 mg of teliospores of M. silybum in the central whorl of rosettes with three to five true leaves. Individual plants in soil-filled pots were placed in a controlled chamber at 16°C with 10 h of light daily. Photon flux density in the chamber was 34 μmol·m-2·s-1 supplied by three 1.8-m long 115W fluorescent tubes and three 52W incandescent bulbs. The central whorl was misted with distilled water twice daily for 2 weeks and the temperature was then lowered to 8°C for 6 weeks. The plants were transferred to a greenhouse bench at 22 to 25°C with 14 h of light daily. Photon flux density on the bench was 620 μmol·m-2·s-1 provided by two 500W sodium vapor lamps, one 1,000W metal halide lamp, and incidental sunlight. After approximately 7 weeks, plants of each species had fully developed capitula that flowered normally, produced no flowers, or formed abnormal flowers. Abnormal capitula contained powdery masses of teliospores in the ovaries of the florets. In contrast to systemic infections that were observed in the field (2), different branches of bolted plants bore both diseased and normal capitula. In turn, diseased capitula of both species were either completely diseased (all florets filled with teliospores) or partially diseased. Four of ten S. marianum plants and six of nine S. eburneum plants were diseased. Pathogenicity tests were repeated four times with similar results. In Greece, field inoculation of S. marianum with 5 mg of teliospores produced an average of 89% diseased plants with an average of 250 g of teliospores produced per plant. A similar level of disease is possible for S. eburneum under field conditions. Teliospores from smutted ovaries of both plant species conformed to the description for M. silybum (2). Both species are annual plants that reproduce solely by seeds. Since M. silybum prevents seed production, this fungus has great potential as a biological control agent in the United States and Tunisia. A voucher specimen has been deposited with the U.S. National Fungus Collections (BPI 863477). Nucleotide sequences for the internal transcribed spacer region are available in GenBank (Accession No. AY285774). To our knowledge, this is the first report of M. silybum parasitizing S. eburneum. References: (1) G. Pottier-AlaPetite. Flore de la Tunisie: Angiospermes-Dicotylédones, Gamopétales, Tunis, 1981. (2) K. Vánky and D. Berner. Mycotaxon 85:307, 2003.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 696-696 ◽  
Author(s):  
J. A. Crouch ◽  
M. P. Ko ◽  
J. M. McKemy

Downy mildew of impatiens (Impatiens walleriana Hook.f.) was first reported from the continental United States in 2004. In 2011 to 2012, severe and widespread outbreaks were documented across the United States mainland, resulting in considerable economic losses. On May 5, 2013, downy mildew disease symptoms were observed from I. walleriana ‘Super Elfin’ at a retail nursery in Mililani, on the Hawai'ian island of Oahu. Throughout May and June 2013, additional sightings of the disease were documented from the islands of Oahu, Kauai, Maui, and Hawai'i from nurseries, home gardens, and botanical park and landscape plantings. Symptoms of infected plants initially showed downward leaf curl, followed by a stippled chlorotic appearance on the adaxial leaf surfaces. Abaxial leaf surfaces were covered with a layer of white mycelia. Affected plants exhibited defoliation, flower drop, and stem rot as the disease progressed. Based on morphological and molecular data, the organism was identified as Plasmopara obducens (J. Schröt.) J. Schröt. Microscopic observation disclosed coenocytic mycelium and hyaline, thin-walled, tree-like (monopodial branches), straight, 94.0 to 300.0 × 3.2 to 10.8 μm sporangiophores. Ovoid, hyaline sporangia measuring 11.0 to 14.6 × 12.2 to 16.2 (average 13.2 × 14.7) μm were borne on sterigma tips of rigid branchlets (8.0 to 15.0 μm) at right angle to the main axis of the sporangiophores (1,3). Molecular identification of the pathogen was conducted by removing hyphae from the surface of three heavily infected leaves using sterile tweezers, then extracting DNA using the QIAGEN Plant DNA kit (QIAGEN, Gaithersburg, MD). The nuclear rDNA internal transcribed spacer was sequenced from each of the three samples bidirectionally from Illustra EXOStar (GE Healthcare, Piscataway, NJ) purified amplicon generated from primers ITS1-O and LR-0R (4). Resultant sequences (GenBank KF366378 to 80) shared 99 to 100% nucleotide identity with P. obducens accession DQ665666 (4). A voucher specimen (BPI892676) was deposited in the U.S. National Fungus Collections, Beltsville, MD. Pathogenicity tests were performed by spraying 6-week-old impatiens plants (I. walleriana var. Super Elfin) grown singly in 4-inch pots with a suspension of 1 × 104 P. obducens sporangia/ml until runoff using a handheld atomizer. Control plants were sprayed with distilled water. The plants were kept in high humidity by covering with black plastic bags for 48 h at 20°C, and then maintained in the greenhouse (night/day temperature of 20/24°C). The first symptoms (downward curling and chlorotic stippling of leaves) and sporulation of the pathogen on under-leaf surfaces of the inoculated plants appeared at 10 days and 21 days after inoculation, respectively. Control plants remained healthy. Morphological features and measurements matched those of the original inoculum, thus fulfilling Koch's postulates. To our knowledge, this is the first report of downy mildew on I. walleriana in Hawai'i (2). The disease appears to be widespread throughout the islands and is likely to cause considerable losses in Hawai'ian landscapes and production settings. References: (1) O. Constantinescu. Mycologia 83:473, 1991. (2) D. F. Farr and A. Y. Rossman. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ July 16, 2013. (3) P. A. Saccardo. Syllogue Fungorum 7:242, 1888. (4) M. Thines. Fungal Genet Biol 44:199, 2007.


Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 110-110 ◽  
Author(s):  
T. Kolomiets ◽  
Z. Mukhina ◽  
T. Matveeva ◽  
D. Bogomaz ◽  
D. K. Berner ◽  
...  

Salsola tragus L. (Russian thistle) is a problematic invasive weed in the western United States and a target of biological control efforts. In September of 2007, dying S. tragus plants were found along the Azov Sea at Chushka, Russia. Dying plants had irregular, necrotic, canker-like lesions near the base of the stems and most stems showed girdling and cracking. Stem lesions were dark brown and contained brown pycnidia within and extending along lesion-free sections of the stems and basal portions of leaves. Diseased stems were cut into 3- to 5-mm pieces and disinfested in 70% ethyl alcohol. After drying, stem pieces were placed into petri dishes on the surface of potato glucose agar. Numerous, dark, immersed erumpent pycnidia with a single ostiole were observed in all lesions after 2 to 3 days. Axenic cultures were sent to the Foreign Disease-Weed Science Research Unit, USDA, ARS, Ft. Detrick, MD for testing in quarantine. Conidiophores were simple, cylindrical, and 5 to 25 × 2 μm (mean 12 × 2 μm). Alpha conidia were biguttulate, one-celled, hyaline, nonseptate, ovoid, and 6.3 to 11.5 × 1.3 to 2.9 μm (mean 8.8 × 2.0 μm). Beta conidia were one-celled, filiform, hamate, hyaline, and 11.1 to 24.9 × 0.3 to 2.5 μm (mean 17.7 × 1.2 μm). The isolate was morphologically identified as a species of Phomopsis, the conidial state of Diaporthe (1). The teleomorph was not observed. A comparison with available sequences in GenBank using BLAST found 528 of 529 identities with the internal transcribed spacer (ITS) sequence of an authentic and vouchered Diaporthe eres Nitschke (GenBank DQ491514; BPI 748435; CBS 109767). Morphology is consistent with that of Phomopsis oblonga (Desm.) Traverso, the anamorph of D. eres (2). Healthy stems and leaves of 10 30-day-old plants of S. tragus were spray inoculated with an aqueous suspension of conidia (1.0 × 106 alpha conidia/ml plus 0.1% v/v polysorbate 20) harvested from 14-day-old cultures grown on 20% V8 juice agar. Another 10 control plants were sprayed with water and surfactant without conidia. Plants were placed in an environmental chamber at 100% humidity (rh) for 16 h with no lighting at 25°C. After approximately 24 h, plants were transferred to a greenhouse at 20 to 25°C, 30 to 50% rh, and natural light. Stem lesions developed on three inoculated plants after 14 days and another three plants after 21 days. After 70 days, all inoculated plants were diseased, four were dead, and three had more than 75% diseased tissue. No symptoms occurred on control plants. The Phomopsis state was recovered from all diseased plants. This isolate of D. eres is a potential biological control agent of S. tragus in the United States. A voucher specimen has been deposited with the U.S. National Fungus Collections (BPI 878717). Nucleotide sequences for the ribosomal ITS regions (ITS 1 and 2) were deposited in GenBank (Accession No. EU805539). To our knowledge, this is the first report of stem canker on S. tragus caused by D. eres. References: (1) B. C. Sutton. Page 569 in: The Coelomycetes. CMI, Kew, Surrey, UK, 1980. (2) L. E. Wehmeyer. The Genus Diaporthe Nitschke and its Segregates. University of Michigan Press, Ann Arbor, 1933.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 681-681
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata Sieb. and Zucc. (columbine) is a perennial garden species belonging to the family Ranunculaceae. During the summer of 2003, a severe outbreak of a previously unknown powdery mildew was observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed infected leaves turned yellow and died. Foot cell was cylindric and appressorium lobed. Conidia were hyaline, ellipsoid, and measured 31.2 to 47.5 × 14.4 to 33 μm (average 38.6 × 21.6 μm). Fibrosin bodies were not present. Cleistothecia were globose, brown, had simple appendages, ranged from 82 to 127 (average 105) μm in diameter, and contained one to two asci. Ascocarp appendages measured five to eight times the ascocarp diameter. Asci were cylindrical (ovoidal) and measured 45.3 to 58.2 × 30.4 to 40.2 μm. Ascospores (three to four per ascus) were ellipsoid or cylindrical and measured 28.3 to 31.0 × 14.0 to 15.0 μ;m. On the basis of its morphology, the pathogen was identified as Erysiphe aquilegiae var. aquilegiae (1). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five, healthy A. flabellata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a garden where temperatures ranged between 20 and 30°C. After 10 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on Aquilegia flabellata in Italy. E. communis (Wallr.) Link and E. polygoni DC. were reported on several species of Aquilegia in the United States (2), while E. aquilegiae var. aquilegiae was previously observed on A. flabellata in Japan and the former Union of Soviet Socialist Republics (3). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Nova Hedwigia, 89:700, 1987. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) K. Hirata. Host Range and Geographical Distribution of the Powdery Mildews. Faculty of Agriculture, Niigata University, 1966.


Plant Disease ◽  
2018 ◽  
Vol 102 (8) ◽  
pp. 1664-1664 ◽  
Author(s):  
S. Moparthi ◽  
M. Bradshaw ◽  
K. Frost ◽  
P. B. Hamm ◽  
J. W. Buck

Plant Disease ◽  
2005 ◽  
Vol 89 (12) ◽  
pp. 1362-1362
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Potentilla fruticosa L. (bush cinquefoil), belonging to the family Rosaceae, is an ornamental plant used in parks and gardens. During the spring and summer of 2005, severe outbreaks of a previously unknown powdery mildew were observed in several private gardens located near Biella (northern Italy). The adaxial and abaxial surfaces of leaves as well as the stems were covered with white mycelium. Buds and flowers also were affected. As disease progressed, infected leaves turned yellow and dehisced. Conidia formed in chains and were hyaline, ovoid, and measured 24.0 to 36.0 × 15.8 to 24.0 μm (average 30.1 × 20.0 μm). Fibrosin bodies were present. Chasmothecia were numerous, sphaerical, amber colored, and diameters ranged from 84.0 to 98.4 μm (average 90.4 μm). Each chasmothecium contained one ascus with eight ascospores. Ascospores measured 26.5 to 27.2 × 13.2 to 15.6 μm (average 26.8 × 14.0 μm). On the basis of its morphology, the causal agent was determined to be Podosphaera aphanis (Wallr.) U. Braun & S. Takamatsu var. aphanis U. Braun (1). Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy P. fruticosa plants. Three plants were inoculated. Three noninoculated plants served as a control. Plants were maintained at temperatures ranging from 12 to 23°C. Ten days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on P. fruticosa in Italy. Erysiphe polygoni D.C. and Sphaerotheca macularis (Wallr.:Fr.) Lind were observed in the United States on P. fruticosa (2), while in Japan, the presence of S. aphanis var aphanis was reported (3). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000 (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) S. Tanda et al. J. Agric. Sci. 39:258, 1995.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 841-841
Author(s):  
H. B. Lee ◽  
H. W. Lee ◽  
H. Y. Mun

Platanus occidentalis L. (sycamore) is an important shade tree distributed throughout the Northern Hemisphere and in South Korea. It has been widely used as an ornamental tree, especially in urban regions and by roadsides. The average rate of roadside planting throughout South Korea covers about 5.7% (up to 38% in Seoul), equivalent to 0.36 million trees. In early July 2012, after a rainy spell in summer, an outbreak of powdery mildew on sycamore was first observed on roadside trees in Gwangju, a southern province of South Korea. A more extensive nationwide survey revealed no powdery mildew in northern or central regions of South Korea. The disease has spread rapidly within Gwangju, even though fungicide applications were carried out after the rainy spell. Major symptoms included white, superficial mycelia, grey to brown lesions on the surface of the leaves due to the presence of a hyperparasite (tentatively identified as Ampelomyces sp.), a slight chlorosis, and severe leaf distortion followed by defoliation. Conidiophores were produced singly, straight, and unbranched, with lengths of 35.2 to 315.2 μm (average 170.4 μm). Conidia were ellipsoid or doliiform, ranging in size from 34.9 to 47.4 μm (average 38.2 μm) long × 16.5 to 26.8 μm (average 23.9 μm) wide. Primary conidia had a truncate base and rounded apex; secondary conidia had both a truncate base and apex. The conidial outer surface had a reticulated wrinkling. Cleistothecia (i.e., sexual spore structures) were not found during the survey, which extended from July to October. These characteristics and the host species match those of Microsphaera platani (syn. Erysiphe platani), which was described on P. occidentalis in Washington State (2). Fungal rDNA was amplified using primers ITS1 and LR5F (4) for one sample (EML-PLA1, GenBank JX485651). BLASTn searches of GenBank revealed high sequence identity to E. platani (99.5% to JQ365943 and 99.3% to JQ365940). Recently, Liang et al. (3) reported the first occurrence of powdery mildew by E. platani on P. orientalis in China based only on its morphology. Thus, in this study, author could only use ITS sequence data from the United States and Europe to characterize the isolate. To date, nine records of powdery mildews of Platanus spp. have been reported worldwide: on P. hispanica from Brazil, Japan, Hungary, and Slovakia; P. orientalis from Israel; P. racemosa from the United States; P. × acerifolia from the United Kingdom and Germany; and Platanus sp. from Argentina and Australia (1). Interestingly, the hyperparasite, Ampelomyces sp., was found with E. platani, suggesting that there may be some level of biocontrol in nature. Pathogenicity was confirmed by gently pressing diseased leaves onto six leaves of healthy sycamore plants in the field in September. The treated leaves were sealed in sterilized vinyl pack to maintain humid condition for 2 days. Similar symptoms were observed on the inoculated leaves 10 days after inoculation. Koch's postulates were fulfilled by re-observing the fungal pathogen. To our knowledge, this is the first report of powdery mildew caused by E. platani on sycamore in South Korea. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/ , 2012. (2) D. A. Glawe. Plant Health Progress, doi:10.1094/PHP-2003-0818-01-HN, 2003. (3) C. Liang et al. Plant Pathol. 57:375, 2008. (4) T. J White et al., pp. 315-322 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., ed. Academic Press, New York, 1990.


Plant Disease ◽  
1998 ◽  
Vol 82 (1) ◽  
pp. 128-128 ◽  
Author(s):  
S. T. Koike ◽  
G. S. Saenz

In December 1996 and January 1997, powdery mildew was observed on potted poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) plants in Monterey County, CA. Mycelia were observed on stems, petioles, mature and immature leaves, and bracts. Severely diseased leaves became twisted and bent and senesced prematurely. The white mycelia were conspicuous, epiphytic, and amphigenous; hyphae measured 4.6 to 6.9 μm in diameter. Growth initially was in patches but eventually became effused. Appressoria were slightly lobed to lobed and sometimes opposite. Conidiophore foot cells were cylindrical, sometimes bent at the base, and slightly flexuous to flexuous. Foot cells measured 30.0 to 46.2 μm × 5.8 to 6.9 μm and were followed by one to two shorter cells. Conidia were cylindrical to slightly doliform and measured 25.4 to 32.3 μm × 11.6 to 18.5 μm. The length-to-width ratios of conidia generally were greater than 2.0. Conidia were produced singly, placing the fungus in the Pseudoidium-type powdery mildew group. Conidia germinated at the ends, and no fibrosin bodies were observed. Cleistothecia were not found. The fungus was identified as an Oidium species. Pathogenicity was demonstrated by gently pressing infected leaves having abundant sporulation onto leaves of potted poinsettia plants (cvs. Freedom Red, Peter Star Marble, and Nutcracker White), incubating the plants in a moist chamber for 48 h, and then maintaining plants in a greenhouse. After 12 to 14 days, powdery mildew colonies developed on the inoculated plants, and the pathogen was morphologically identical to the original isolates. Uninoculated control plants did not develop powdery mildew. This is the first report of powdery mildew on poinsettia in California. This fungus appears similar to Microsphaera euphorbiae but has longer, slightly flexuous foot cells that do not match the description for M. euphorbiae (1,2). An alternative identification would be Erysiphe euphorbiae; however, there are no available mitosporic descriptions for morphological comparisons (1,2). In the United States, powdery mildew of poinsettia previously has been reported in various states in the Pacific Northwest, Midwest, and Northeast. References: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987. (2) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 853-853 ◽  
Author(s):  
F. Peduto Hand ◽  
R. A. Choudhury ◽  
W. D. Gubler

Pomegranates (Punica granatum L.) are an expanding industry in the United States with California growing approximately 32,000 acres with a crop value of over $155 million (1). During June and July of 2012, we observed severe limb and branch dieback in pomegranate orchards cv. Wonderful located in Contra Costa, Kings, and Kern counties of California. Disease symptoms included yellowing of leaves, branch and limb dieback, wood lesions, and canker formation. Dark brown Cytospora-like cultures were consistently isolated from active cankers on potato dextrose agar (PDA) amended with 100 mg l−1 tetracycline hydrochloride. Three isolates (UCCE1223, UCCE1233, and UCCE1234) representative of each orchard were sub-cultured onto PDA and incubated at 22°C under fluorescent intermittent light (12 h light, 12 h dark). Fungal colonies had whitish mycelia that turned olive green to dark brown with maturity and formed globose and dark brown pycnidia after 12 days. Conidia were hyaline, aseptate, allantoid, and (4) 4.5 to 5 (6) × (1) 1.5 (2) μm (n = 180). Pycnidia formed in culture measured (250) 350 to 475 (650) μm in diameter (n = 40). Identification of the isolates was confirmed by sequence comparison of the internal transcribed spacer region (ITS1-5.8S-ITS2) of the rDNA and part of the translation elongation factor 1-α gene (EF1-α) with sequences available in GenBank. Consensus sequences of both genes of all isolates showed 99% homology to the species Cytospora punicae Sacc. (2). All sequences were deposited in GenBank (Accession Nos. KJ621684 to 89). Pathogenicity of the isolates was determined by branch inoculation. In December 2012, 3-year-old branches of P. granatum cv. Wonderful were inoculated by placing 5-mm-diameter mycelium plugs from the growing margin of 14-day-old PDA cultures in fresh wounds made with a 5-mm-diameter cork-borer. Eight branches per isolate were inoculated on eight different trees. Eight control branches were inoculated with non-colonized PDA agar plugs. Inoculations were covered with Vaseline and wrapped with Parafilm to retain moisture. Branches were harvested in August 2013 and examined for canker development and the extent of vascular discoloration spreading downward and upward from the inoculation point. Isolations from the edge of discolored tissue were conducted to fulfill Koch's postulates. C. punicae was re-isolated from 100% of the inoculated branches. Total length of vascular discoloration averaged 30.2 mm in branches inoculated with the three C. punicae isolates and 9 mm in the control branches. No fungi were isolated from the slightly discolored tissue of the controls. To our knowledge, this is the first report of C. punicae as a fungal trunk pathogen of pomegranate trees in the United States. References: (1) California County Agricultural Commissioners' Data, 2010 Crop Year. USDA NASS California field office, retrieved from http://www.nass.usda.gov/Statistics_by_State/California/ Publications/AgComm/201010cactb00.pdf , 2011. (2) P. A. Saccardo. Sylloge Fungorum 3:256, 1884.


Sign in / Sign up

Export Citation Format

Share Document