scholarly journals First Report of Colletotrichum capsici Causing Postharvest Anthracnose on Papaya in South Florida

Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 1065-1065 ◽  
Author(s):  
T. L. B. Tarnowski ◽  
R. C. Ploetz

Postharvest anthracnose of papaya, Carica papaya, is an important disease in most production areas worldwide (2). Colletotrichum gloeosporioides causes two types of anthracnose symptoms on papaya: (i) circular, sunken lesions with pink sporulation; and (ii) sharply defined, reddish brown and sunken lesions, described as ‘chocolate spot’ (2). Colletorichum spp. were isolated from lesions of the first type on papaya fruit from the University of Florida Tropical Research and Education Center, Homestead in December 2007 and from fruit imported from Belize in March 2008 (4). Single-spore isolates were identified using colony morphology and internal transcribed spacer (ITS) and mating type (MAT1-2) sequences. Two taxa were identified in both locations: (i) C. gloeosporioides (MAT1-2; GenBank Nos. GQ925065 and GQ925066) with white-to-gray, fluffy colonies with orange sporulation and straight and cylindrical conidia; and (ii) C. capsici (ITS; GenBank Nos. GU045511 to GU045514) with sparse, fluffy, white colonies with setose acervuli and falcate conidia. In addition, in Florida, a Glomerella sp. (ITS; GenBank Nos. GU045518 and GU045520 to GU045522) was recovered with darkly pigmented colonies that produced fertile perithecia after 7 to 10 days on potato dextrose agar (PDA). In each of three experiments, mature fruit (cv. Caribbean Red) were wounded with a sterile needle and inoculated with a 15-μl drop of 0.3% water agar that contained 105 conidia ml–1 of representative isolates of each taxon. The diameters of developing lesions were measured after 7 days of incubation in the dark at 25°C, and the presence of inoculated isolates was confirmed by their recovery from lesion margins on PDA. In all experiments, C. capsici and C. gloeosporioides produced lesions that were significantly larger than those that were caused by the water control and Glomerella sp. (respectively, approximately 12, 17, 0, and <1 mm in diameter). C. gloeosporioides produced sunken lesions with dark gray centers and pink/gray sporulation, which match those previously described for anthracnose on papaya (2). In contrast, C. capsici produced dark lesions due to copious setae of this pathogen; they resembled C. capsici-induced lesions on papaya that were reported previously from the Yucatan Peninsula (3). C. capsici has also been reported to cause papaya anthracnose in Asia (4), but to our knowledge, this is the first time it has been reported to cause this disease in Florida. Since it was also recovered from fruit that were imported from Belize, it probably causes anthracnose of papaya in that country as well. Another falcate-spored species, C. falcatum, was recovered from rotted papaya fruit in Texas (1). The Glomerella sp. was recovered previously from other hosts as an endophyte and causes anthracnose lesions on passionfruit (4). However, its role as a pathogen on papaya is uncertain since it was not pathogenic in the current work; the isolates that were recovered from papaya lesions may have colonized lesions that were caused by C. capsici and C. gloeosporioides. References: (1) Anonymous. Index of Plant Diseases in the United States. U.S. Dept. of Agric. Handb. No. 165. Washington, D.C., 1960. (2) D. M. Persley and R. C. Ploetz. Page 373 in: Diseases of Tropical Fruit Crops. R. C. Ploetz, ed. CABI Publishing. Wallingford, UK, 2003. (3) R. Tapia-Tussell et al. Mol Biotechnol 40:293, 2008. (4) T. L. Tarnowski. Ph.D. diss. University Florida, Gainesville, 2009.

Plant Disease ◽  
2010 ◽  
Vol 94 (12) ◽  
pp. 1506-1506 ◽  
Author(s):  
T. L. B. Tarnowski ◽  
A. J. Palmateer ◽  
J. H. Crane

Pitahaya (Hylocereus undatus (Haw.) Britton & Rose), a cactus grown for its edible fruit, is gaining popularity in South Florida as part of the specialty tropical fruit market. In July 2009, flowers and fruit were discovered with an uncharacterized rot. Small, circular, light brown, depressed lesions expanded to form large areas of rot on flowers and fruit in 7 to 10 days. The lesions produced large amounts of dark fungal spores. Single-spore isolates were identified morphologically and by aligning internal transcribed spacer (ITS) and glyceraldehyde-3-phosphate dehydrogenase (gpd) DNA sequences from the isolates with previously published sequences of Bipolaris, Drechslera, and Cochliobolus species. Conidia from the dark, blackish brown colonies were formed at the tips of pale golden brown, straight to flexuous conidiophores, 99 (184) 313 × 3 (6) 8 μm and slightly swollen at the apex and base. Conidia were pale-to-medium golden brown, smooth and clavate with a protuberant hilum, 24 (40) 51 × 9 (10) 13 μm, and two to four distoseptate. The isolates closely match descriptions of Bipolaris cactivora (= Drechslera cactivora) (3,4), although isolates from pitahaya had smaller conidia (30 to 65 μm) than previously reported. Conidial characteristics from a B. cactivora herbarium specimen BPI 431621 (U.S. National Fungus Collections) closely matched (29 (36) 50 × 8 (9) 11 μm, two to four distoseptate) our isolates. ITS (GenBank Accession Nox. HM598677–79) sequences aligned most closely (99.7% homology) with another B. cactivora isolate from China (GU390882), and both ITS and gpd (GenBank Accession Nos. HM598680–82) sequences indicate a close relationship to Bipolaris indica. Wounded or nonwounded mature pitahaya fruit and mature stems were inoculated with either a mycelia plug or a 15-μl 0.3% agar drop containing 105 conidia ml–1. Lesion diameters were measured after 7 days at 25°C, the fungus was reisolated on potato dextrose agar (PDA) and its identity was confirmed. Mean lesion diameters on mature fruit were 6.0 to 10.8 mm, depending on the inoculation method, and sporulation began 6 days after inoculation. On mature plant stems, wound-inoculated treatments formed 1.8 to 3.4 mm lesions, but nonwounded inoculations and controls were negative. Lesions were light tan, circular, and did not sporulate. To our knowledge, this is the first report of fruit rot caused by B. cactivora on pitahaya in Florida. The same pathogen causes stem rot of the Cactaceae in Europe and the United States (2) and a fruit rot on pitahaya in Japan (4). In Florida, it has been reported as causing a leaf spot on Portulaca oleracea (1). Our results indicate that B. cactivora causes flower and fruit rot on pitahaya, but does not seriously affect mature plant stems. The flower rot does not appear to significantly increase incidence but may provide inoculum for the fruit rot. The high incidence of fruit rot affecting commercial operations in Miami-Dade County over the past 2 years requires an effective disease management strategy. References: (1) S. A. Alfieri, Jr. et al. Bull. 14. Index of Plant Diseases in Florida (Revised). Florida Dep. Agric. Consumer Serv., Div. Plant Ind., 1984. (2) R. D. Durbin et al. Phytopathology 45:509, 1955. (3) M. B. Ellis. Page 432 in: Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, England. 1971. (4) S. Taba et al. J. Gen. Plant Pathol. 73:374, 2007.


Author(s):  
PHILIP VAN BEYNE ◽  
VANDA CLAUDINO-SALES ◽  
SAULO ROBERTO DE OLIVEIRA VITAL ◽  
DIEGO NUNES VALADARES

In its third edition, the “William Morris Davis – Journal of Geomorphology” presents its second interview with geographers, to head the “Interviews” section, which opens each published issue. This time, it is the first international interview, carried out with Professor Philip van Beynen, from the University of South Florida, in the United States. Professor Philip van Beynen was interviewed on the topic “Karst in Urban Areas”, and brings important data on the subject, with beautiful illustrations and with examples from all over the world. The interview took place on September 17, 2020, with the participation of Vanda de Claudino-Sales (Professor of the Academic Master in Geography at the State University of Vale do Acarau-UVA) and Saulo Roberto Oliveira Vital (Professor of the Department of Geography and the Post-Graduate Program in Geography at the Federal University of Paraiba - UFPB), and was transcribed by Diego Nunes Valadares, master's student on Geography at the Federal University of Rio Grande do Norte. Professor van Beynen was born in New Zealand, where he received his degree in Geography at the University of Auckland. He earned a master's degree from the same university, and a doctorate and post-doctorate from McMaster University, Canada. He has been a professor at the School of Geoscience at the University of South Florida since 2009, where he   has been developing research related to different components of karst environments. The interview shows his great expertise on the subject, and is very much worth to be read and seen even for those who are not specialists in karst.


2021 ◽  
Author(s):  
Randy W. Larsen ◽  
Kathy Bradley-Klug ◽  
Michael Bloom ◽  
Howard Goldstein ◽  
Paul R. Sanberg

Pandemics represent significant threats to global health and impact all aspects of human life including physical and mental health, global economics, education, public policy and communication. The diversity of impacts associated with global pandemics as well as the speed of the resulting disease spread require multidisciplinary timely approaches to address the complex interplay of factors required for pandemic mitigation. Universities provide a critical national asset for addressing pandemic mitigation as these institutions possess broad intellectual capital that can be leveraged to guide national and global responses. Universities across the United States have approached the pandemic with a variety of strategies to link disciplinary expertise to target differing aspects of the problem. The University of South Florida adapted a rapid response research network approach that essentially integrates HIBAR principles (Highly Integrative Basic and Responsive research) to address wide ranging aspects of the COVID-19 pandemic. This description of the USF Pandemic Response Research Network (USF-PRRN) highlights the HIBAR features of the network and how the USF-PRRN concept can be applied to other global sustainability challenges.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 317-324 ◽  
Author(s):  
E. M. Lemes ◽  
C. L. Mackowiak ◽  
A. Blount ◽  
J. J. Marois ◽  
D. L. Wright ◽  
...  

Soybean rust (SBR), caused by Phakopsora pachyrhizi, is one of the most destructive fungal diseases affecting soybean production. Silicon (Si) amendments were studied as an alternative strategy to control SBR because this element was reported to suppress a number of plant diseases in other host–pathogen systems. In greenhouse experiments, soybean cultivars inoculated with P. pachyrhizi received soil applications of wollastonite (CaSiO3) (Si at 0, 0.96, and 1.92 t ha–1) or foliar applications of potassium silicate (K2SiO3) (Si at 0, 500, 1,000, or 2,000 mg kg–1). Greenhouse experiment results demonstrated that Si treatments delayed disease onset by approximately 3 days. The area under disease progress curve (AUDPC) of plants receiving Si treatments also was significantly lower than the AUDPC of non-Si-treated plants. For field experiments, an average 3-day delay in disease onset was observed only for soil Si treatments. Reductions in AUDPC of up to 43 and 36% were also observed for soil and foliar Si treatments, respectively. Considering the natural delayed disease onset due to the inability of the pathogen to overwinter in the major soybean production areas of the United States, the delay in disease onset and the final reduction in AUDPC observed by the soil Si treatments used may lead to the development of SBR control practices that can benefit organic and conventional soybean production systems.


Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 786-786 ◽  
Author(s):  
T. L. B. Tarnowski ◽  
R. C. Ploetz

Anthracnose is an important foliar and fruit disease of passion fruit, Passiflora spp. (3). In 2008, postharvest anthracnose on purple and yellow passion fruits (P. edulis Sims and P. edulis f. flavicarpa O. Degner, respectively) from a commercial planting in Miami-Dade County, FL was examined. Lesions began as light brown areas that became papery, covered much of the fruit surface, and developed pink-to-dark sporulation. Single-conidium isolates from lesions were examined morphologically and with internal transcribed spacer (ITS) sequences. Four taxa were identified: Colletotrichum boninense (GenBank No. GU045516) with felted cream-to-orange colonies and cylindrical conidia; C. capsici (synonym C. truncatum [2]) (GU045515) with sparse, white mycelia, setose acervuli, and falcate conidia; C. gloeosporioides with fluffy white-to-gray colonies and straight, cylindrical conidia; and a Glomerella sp. (GU045517) with darkly pigmented perithecia. In two experiments, four mature, yellow passion fruit were wounded at a single equatorial site with a sterile needle and inoculated with a 15-μl drop of 0.3% water agar that did not contain (noninoculated control) or contained 105 conidia per ml of representative isolates from each taxon. After 21 days at 25°C without light, anthracnose incidence was recorded and the presence of the isolates was confirmed by their recovery from lesion margins on potato dextrose agar. Anthracnose did not develop on noninoculated control fruit. Mean incidences of anthracnose exceeded 50% for isolates of C. boninense (three from passion fruit), C. capsici (two from passion fruit), and a Glomerella sp. (two from passion fruit and one each from papaya and eugenia). Despite its common indictment as a causal agent of anthracnose on passion fruit (3), symptoms developed on only one fruit that was inoculated with an isolate of C. gloeosporioides from passion fruit (13%) and did not develop after inoculation with an isolate from papaya. Work is needed to determine whether host-specific populations of C. gloeosporioides exist on passion fruit that were not assessed during this study or whether the pathogen was misidentified in previous reports on this host. C. boninense was associated previously with postharvest anthracnose of passion fruit in Japan and Colombia, whereas C. capsici was associated with leaf anthracnose of passion fruit in Florida and Japan (4); both species are reported here for the first time as causes of postharvest anthracnose of passion fruit in Florida. Glomerella sp. caused darkly pigmented lesions and produced the teleomorph on symptomatic passion fruit and in single-ascospore cultures. Isolates with ITS sequences that are 99% homologous to those from passion fruit have been recovered in South Florida from eugenia, papaya, and Piper betle (4) and from other locations on several other hosts (GenBank); they are often nonpathogenic endophytes. Almeida and Coêlho (1) reported in Brazil a Glomerella sp. that formed the teleomorph in culture and caused anthracnose on passion fruit, but did not provide ITS sequences. Additional work is warranted on the identity and ecology of these fungi. References: (1) L. C. C. Almeida and R. S. B. Coêlho. Fitopatol. Bras. 32:318, 2007. (2) U. Damm et al. Fungal Divers. 39:45, 2009. (3) B. Manicom et al. Page 413 in: Diseases of Tropical Fruit Crops. R. C. Ploetz, ed. CABI Publishing, Wallingford, UK, 2003. (4) T. L. Tarnowski. Ph.D. diss. University of Florida, Gainesville, 2009.


Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 175-175 ◽  
Author(s):  
J. C. Comstock ◽  
S. G. Sood ◽  
N. C. Glynn ◽  
J. M. Shine ◽  
J. M. McKemy ◽  
...  

In June 2007, approximately 8 km east of Belle Glade, FL, a rust disease was observed on a sugarcane (a complex hybrid of Saccharum L. species) cultivar (CP 80-1743) considered resistant to brown rust caused by Puccinia melanocephala Syd. & P. Syd. Approximately 10 km south of Canal Point, FL, another cultivar (CP 72-2086), also considered resistant to P. melanocephala, was found to be infected with a rust. Samples were sent to the USDA-APHIS National Mycologist and the USDA-ARS Systematic Mycology and Microbiology Laboratory in Beltsville, MD for identification. Observed morphological features were consistent with P. kuehnii E.J. Butler. Uredinial lesions were orange and variable in size, measuring 650 to 850 × 26 to 32 μm, hypophyllous, ellipsoidal to fusiform in shape, and distinctly lighter than pustules of P. melanocephala that were present in the area along with P. kuehnii. Urediniospores were mostly obovoid to pyriform or broadly ellipsoidal, variable in size, 32 to 45 × 25 to 30 μm, and moderately echinulate with mostly evenly distributed spines 2 to 4.5 μm apart. Walls were orange-to-light cinnamon brown, 1 to 2.5 μm thick with a pronounced apical wall thickening as much as 7 μm, and 4 to 5 equatorial pores. Similar orange uredinial lesions were subsequently observed on the same two cultivars and several other cultivars, including CPCL99-1777 and CPCL01-1055, at different locations in South Florida. Telia and teliospores were not observed. The nuclear large subunit rDNA region of the rust infecting cv. CP 80-1743 (BPI 878243, GenBank Accession No. EU164549) and the ITS1, 5.8S, and ITS2 rDNA regions of the rust infecting CP 80-1743 (GenBank Accession No. EU176009) and CP 72-2086 (GenBank Accession No. EU176008) were sequenced (1,4). All sequences were identical to sequences of P. kuehnii and distinct from known sequences of P. melanocephala (4). To our knowledge, this is the first confirmed record of P. kuehnii infecting sugarcane in the Western Hemisphere, and the disease appears to be distributed widely in the South Florida sugarcane-growing area. Although listed by P. Holliday (3) as occurring in Cuba, the Dominican Republic, and Mexico, CMI map no. 215 ed. 4 (2) does not include these three countries in the known distribution of P. kuehnii. P. kuehnii has also been reported in the literature as present in Hawaii (4). However, examination of the specimen label found that the specimen cited in those papers (BPI 079624) was actually collected in Tahiti. Therefore, the report from Hawaii is erroneous. References: (1) M. C. Aime. Mycoscience 47:112, 2006. (2) CMI. Distribution Maps of Plant Diseases. No. 215, ed. 4. CAB International, Wallingford, UK, 1981. (3) P. Holliday. Fungus Diseases of Tropical Crops. Cambridge University Press, Cambridge, 1980. (4) E. V. Virtudazo et al. Mycoscience 42:447, 2001.


Plant Disease ◽  
2004 ◽  
Vol 88 (1) ◽  
pp. 82-82 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Aralia japonica (synonym Fatsia japonica), belonging to the Araliaceae family, is a foliage plant highly valued in Italy for landscape and interior decoration. In the fall of 2002, a leaf blight disease was observed on plants grown in pots that were maintained under shade at a density of 15 to 20 pots per m2 at a nursery located in central Italy (Teramo Province). Typical symptoms were tan-to-dark brown leaf spots and rapid blighting of foliage under moist conditions. Chlorotic zones around necrotic lesions were common, and considerable leaf drop was associated with the disease. Affected plants were rarely killed, but the presence of lesions on mature plants reduced aesthetic quality and market value. The disease occurred on 70% of the plants. A fungus identified morphologically as Alternaria panax (2) was consistently isolated from infected leaves on potato dextrose agar (PDA). The fungus grows slowly and sparsely on PDA and produces a light brown mycelium, a characteristic red diffusible pigment in the agar medium, and rare conidia under 12-hr photoperiods. Measurements were carried out on conidia formed from single-spore isolates grown on autoclavated host tissue on water agar (LWA) at 24°C for 10 days. In LWA culture, conidia were borne singly or in chains of two to four conidia. Conidia produced in culture were smaller than those formed on the host and were highly variable in shape. They appeared obclavate, ellipsoidal, and obpyriform and pale to dark brown with relatively short or false beaks. Conidial bodies were 14.4 to 48.0 μm long (average 30.5 μm) and 7.2 to 12.0 μm wide (average 9.9 μm) with 3 to 10 transverse and a few longitudinal septa. Length of appendages was 9.6 to 26.0 μm (average 16.0 μm). Pathogenicity tests were performed by inoculating leaves of healthy Aralia japonica and Schefflera actinophylla plants by placing mycelial disks (5 mm in diameter) directly on wounded leaf tissues. Uninoculated, wounded plants served as controls. Four plants of each species were used. Plants were covered for 72 h with plastic bags and maintained in a growth chamber at 20°C (12 hours per day of fluorescent light). Control plants were maintained similarly. The first lesions developed on leaves of inoculated plants of both species after 7 days. A. panax was consistently reisolated from the lesions. The pathogenicity test was carried out twice. The presence of A. panax on Aralia japonica has been reported in Japan, Korea (2), and the United States (1) but to our knowledge, this is the first report of A. panax on Aralia japonica in Europe. References: (1) S. Alfieri et al. Index of plant diseases in Florida. Bull. 11:52, Florida Department of Agriculture and Consumer Services, 1984 (2) S. H. Yu et al. Ann. Phytopathol. Soc. Jpn. 50:313, 1984.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 994-994 ◽  
Author(s):  
Y. X. Li ◽  
W. X. Chen ◽  
A. Y. Liu ◽  
Q. L. Chen ◽  
S. J. Feng

Mangosteen (Garcinia mangostana L., Guttiferae) is a tropical fruit renowned for its pleasant taste, rich nutrition, and medicinal value. Little research about mangosteen diseases during storage and transport has been reported. In June of 2012, fruit rots on mangosteens imported from Thailand were observed in Guangzhou, China. In infected fruits, pericarps showed an increased firmness, were discolored to deep pink, and the edible aril became brown and rotten. In order to search for the etiological agent of this rot symptom, infected mangosteens were analyzed. Diseased mangosteen tissues were surface-sterilized with 70% alcohol, then with 0.1% HgCl2, dipped in sterilized water three times, and placed onto potato dextrose agar (PDA) at 26°C. The fungi isolated from tissues of the pericarp and aril were similar in morphology and grew rapidly, covering the plate surface (9 mm diameter) after 2 to 3 days of incubation at 26°C. The morphological characters of 10 single-spore isolates were observed. These isolates showed light yellow to light brown fertile colonies on PDA. On corn meal agar (CMA), conidiophores were erect, arising from wide hyphae; they were composed of a basal stipe ending in a penicillate conidiogenous apparatus with directly subtending sterile stipe extensions ranging from 74.5 to 195.0 μm long. Conidia were unicellular, smooth, oblong to elliptical, 6.3 to 8.5 × 2.5 to 3.0 μm, and accumulated in a mucilaginous mass. Chlamydospores were multicellular, dark brown, regular in shape and thick-walled, and 40.0 to 52.5 μm in diameter. On the basis of these morphological characters, these isolates were identified as Gliocephalotrichum bulbilium (2). To confirm the identity of this fungus, genomic DNA of two isolates was extracted, and fragments of ITS region and β-tubulin gene were amplified by PCR, sequenced, and compared with sequences of Gliocephalotrichum species available in NCBI GenBank. Both DNA regions (GenBank Accession Nos. KF716166 and KF716168) had sequence similarities of 99% and 97%, respectively, to other G. bulbilium sequences at GenBank. Pathogenicity tests were conducted on three detached fruits for two isolates. Fruits were inoculated using 5-mm mycelial disks with conidia taken from 3-day-old cultures of G. bulbilium isolate Gb1 and Gb10 grown on PDA. Controls were inoculated with PDA disks only. All treated fruits were kept individually in a humid chamber at 26°C. Tests were repeated twice. Three days after inoculation, white mycelial growth for Gb was observed at inoculation sites. Eight days after inoculation, mycelium of Gb nearly covered the fruit, causing fruit rot, and the pericarp became hard and light in color. The control fruit did not rot. G. bulbilium was re-isolated from diseased plant tissue, thus fulfilling Koch's postulates. G. bulbilium has been reported causing postharvest fruit rot of rambutan (Nephelium lappaceum) and guava (Psidium guajava) in some locations (3,4). Moreover, the fungus caused cranberry fruit rot in the United States (1). To our knowledge, this is the first report of G. bulbilium causing postharvest fruit rot of mangosteen in China. It is uncertain whether the fungus infected mangosteen in Thailand and was carried to China due to commercial relationship. References: (1) C. Constantelos et al. Plant Dis. 95:618, 2011. (2) C. Decock et al. Mycologia 98:488, 2006. (3) L. M. Serrato-Diaz et al. Plant Dis. 96:1225, 2012. (4) A. Sivapalan et al. Australas. Plant Pathol. 27:274, 1998.


Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 376-376 ◽  
Author(s):  
S. M. Marek ◽  
R. A. Muller ◽  
N. R. Walker

During late June and early July of 2005, signs of bermudagrass ergot were reported from numerous northern and eastern counties in Oklahoma. Signs were observed primarily on forage-type bermudagrass (Cynodon dactylon (L.) Pers.), as well as bermudagrass turf. During the “honeydew” stage, honeydew was frequently observed exuding from most of the ovaries of infected inflorescences. These signs of ergot have been observed previously on bermudagrass in Oklahoma and Texas (1). Sphacelia-type conidia were abundantly produced during the honeydew stage and were single-celled, hyaline, averaged 14 × 5 μm in size, and were reniform to allantoid in shape. When streaked on water agar, conidia produced terminal holoblastic secondary conidia. Single-spore cultures were isolated from the honeydew of bermudagrasses from Logan and Muskogee counties in Oklahoma and grew slowly as white mycelium on potato dextrose agar (PDA). Koch's postulates were fulfilled for these two isolates by spray inoculating four bermudagrass inflorescences at anthesis with mycelium scraped from a PDA plate and homogenized in water. Control plants' inflorescences were sprayed with a water suspension of a similar amount of sterile PDA as inoculated plants. Plants were placed inside plastic bags to maintain humidity and incubated in a growth chamber at 22°C (14-h photoperiod) and 20°C (10 h of darkness). After 9 days, honeydew exuded from the inoculated inflorescences, but not from the controls. Single-spore cultures were reisolated from the honeydew, and conidia streaked on water agar formed identical secondary conidia. The complete nuclear ribosomal internal transcribed spacer (ITS) region was amplified from DNA extracted from honeydew and single-spore cultures using the ITS4 and ITS5 primers (4) and sequenced. All sequences were identical and a search of GenBank at NCBI found these sequences were most similar to the ITS regions of Claviceps cynodontis Langdon (100%, Accession No. AJ557074) and C. maximensis Theis (99%, Accession No. AJ133396). The ITS sequence from the Logan County isolate was deposited at Gen-Bank (Accession DQ187312). The morphology, secondary conidiation, and ITS sequences identify the causal fungus as C. cynodontis (2) and differentiate it from C. purpurea (Fr.) Tul., the previously identified cause of bermudagrass ergot (1). To our knowledge, this is the first report of C. cynodontis on bermudagrass in Oklahoma and may represent a recent introduction to the United States (2; S. Pažoutová and M. Flieger, personal communication). A Claviceps sp. isolated from bermudagrass has been shown to produce ergot alkaloids possibly causing “bermudagrass tremors” in cattle (3). In regions where bermudagrass is the predominant forage for livestock, the toxicological significance of bermudagrass ergot caused by C. cynodontis is unclear and requires further research. References: (1) K. E. Conway et al. Plant Dis. 76:1077, 1992. (2) S. Pažoutová et al. Can J. Plant Pathol. 27:541, 2005. (3) J. K. Porter et al. J. Agric. Food Chem. 22:838, 1974. (4) T. J. White et al. Pages 315–322 in: PCR Protocols: A Guide to Methods and Applications. Academic Press Inc., New York, 1990.


EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
Author(s):  
Hardev Sandhu ◽  
Wayne Davidson

CPCL 97-2730 (Milligan et al. 2009) and CPCL 00-4111 (Glynn et al. 2011) are developed through the cooperative agreement between the United States Department of Agriculture (USDA), Canal Point, the university of Florida, Everglades Research and Education Center, Belle Glade and Florida Sugar Cane League. Prefix ‘CPCL’ in the name of these cultivars indicate that their crosses were made at the US Sugar Corporation, Clewiston (CL) and selection at different stages was carried through the cooperative breeding and selection program based at Canal Point (CP). Both are emerging sugarcane cultivars in Florida with their rapid expansion in last couple of years. CPCL 97-2730 and CPCL 00-4111 were ranked among the top 10 sugarcane cultivars in Florida in 2015 sugarcane variety census (VanWeelden et al. 2016) based on their total acreage.  High biomass yield and better rust resistance than most commercial cultivars greatly improves the chances of their adoption by the growers. The purpose of this fact sheet is to provide basic information (Table 1) and yield and disease information (Table 2) about CPCL 97-2730 and CPCL 00-4111 to assist growers in decision making on further expansion of these cultivars. 


Sign in / Sign up

Export Citation Format

Share Document