scholarly journals Effects of Silicon Applications on Soybean Rust Development Under Greenhouse and Field Conditions

Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 317-324 ◽  
Author(s):  
E. M. Lemes ◽  
C. L. Mackowiak ◽  
A. Blount ◽  
J. J. Marois ◽  
D. L. Wright ◽  
...  

Soybean rust (SBR), caused by Phakopsora pachyrhizi, is one of the most destructive fungal diseases affecting soybean production. Silicon (Si) amendments were studied as an alternative strategy to control SBR because this element was reported to suppress a number of plant diseases in other host–pathogen systems. In greenhouse experiments, soybean cultivars inoculated with P. pachyrhizi received soil applications of wollastonite (CaSiO3) (Si at 0, 0.96, and 1.92 t ha–1) or foliar applications of potassium silicate (K2SiO3) (Si at 0, 500, 1,000, or 2,000 mg kg–1). Greenhouse experiment results demonstrated that Si treatments delayed disease onset by approximately 3 days. The area under disease progress curve (AUDPC) of plants receiving Si treatments also was significantly lower than the AUDPC of non-Si-treated plants. For field experiments, an average 3-day delay in disease onset was observed only for soil Si treatments. Reductions in AUDPC of up to 43 and 36% were also observed for soil and foliar Si treatments, respectively. Considering the natural delayed disease onset due to the inability of the pathogen to overwinter in the major soybean production areas of the United States, the delay in disease onset and the final reduction in AUDPC observed by the soil Si treatments used may lead to the development of SBR control practices that can benefit organic and conventional soybean production systems.

Plant Disease ◽  
2005 ◽  
Vol 89 (6) ◽  
pp. 678-682 ◽  
Author(s):  
S. Pivonia ◽  
X. B. Yang ◽  
Z. Pan

This article assesses the epidemic potential of soybean rust (Phakopsora pachyrhizi) in the United States. In the assessment, there are three critical components of uncertainty: (i) suitability of climate conditions in production areas for soybean rust epidemics; (ii) likelihood of establishment of the fungus in North America; and (iii) the seasonal dispersal potential of the pathogen from overwintering regions to major soybean production regions. Assessments on the first and second components suggest soybean rust epidemics are likely in the United States, and the certainty of the third component is yet to be determined. Comparison of epidemiological factors for soybean rust in soybean production regions between China and the United States shows a complicated picture with the United States having factors that both increase and decrease risk. Future investigation of risk components—incipience in the field and long-distance dispersal—is needed.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 263-268 ◽  
Author(s):  
S. K. Gremillion ◽  
A. K. Culbreath ◽  
D. W. Gorbet ◽  
B. G. Mullinix ◽  
R. N. Pittman ◽  
...  

Field experiments were conducted in 2002 to 2006 to characterize yield potential and disease resistance in the Bolivian landrace peanut (Arachis hypogaea) cv. Bayo Grande, and breeding lines developed from crosses of Bayo Grande and U.S. cv. Florida MDR-98. Diseases of interest included early leaf spot, caused by the fungus Cercospora arachidicola, and late leaf spot, caused by the fungus Cercosporidium personatum. Bayo Grande, MDR-98, and three breeding lines, along with U.S. cvs. C-99R and Georgia Green, were included in split-plot field experiments in six locations across the United States and Bolivia. Whole-plot treatments consisted of two tebuconazole applications and a nontreated control. Genotypes were the subplot treatments. Area under the disease progress curve (AUDPC) for percent defoliation due to leaf spot was lower for Bayo Grande and all breeding lines than for Georgia Green at all U.S. locations across years. AUDPC for disease incidence from one U.S. location indicated similar results. Severity of leaf spot epidemics and relative effects of the genotypes were less consistent in the Bolivian experiments. In Bolivia, there were no indications of greater levels of disease resistance in any of the breeding lines than in Bayo Grande. In the United States, yields of Bayo Grande and the breeding lines were greater than those of the other genotypes in 1 of 2 years. In Bolivia, low disease intensity resulted in the highest yields in Georgia Green, while high disease intensity resulted in comparable yields among the breeding lines, MDR-98, and C-99R. Leaf spot suppression by tebuconazole was greater in Bolivia than in the United States. This result indicates a possible higher level of fungicide resistance in the U.S. population of leaf spot pathogens. Overall, data from this study suggest that Bayo Grande and the breeding lines may be desirable germplasm for U.S. and Bolivian breeding programs or production.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 75-81 ◽  
Author(s):  
M. Twizeyimana ◽  
G. L. Hartman

The introduction of Phakopsora pachyrhizi, the cause of soybean rust, into the United States is a classic case of a pathogen introduction that became established in a new geographical region overwintering on a perennial host (kudzu, Pueraria lobata). The objective of our study was to classify the pathogenic variation of P. pachyrhizi isolates collected in the United States, and to determine the spatial and temporal associations. In total, 72 isolates of P. pachyrhizi collected from infected kudzu and soybean leaves in the United States were purified, then established and increased on detached soybean leaves. These isolates were tested for virulence and aggressiveness on a differential set of soybean genotypes that included six genotypes with known resistance genes (Rpp), one resistant genotype without any known characterized resistance gene, and a susceptible genotype. Three pathotypes were identified among the 72 U.S. P. pachyrhizi isolates based on the virulence of these isolates on the genotypes in the differential set. Six aggressiveness groups were established based on sporulating-uredinia production recorded for each isolate on each soybean genotype. All three pathotypes and all six aggressiveness groups were found in isolates collected from the southern region and from both hosts (kudzu or soybean) in 2008. Shannon's index based on the number of pathotypes indicated that isolates from the South region were more diverse (H = 0.83) compared with the isolates collected in other regions. This study establishes a baseline of pathogenic variation of P. pachyrhizi in the United States that can be further compared with variation reported in other regions of the world and in future studies that monitor P. pachyrhizi virulence in association to deployment of rust resistance genes.


Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 1034-1034
Author(s):  
M. A. Delaney ◽  
E. J. Sikora ◽  
D. P. Delaney ◽  
M. E. Palm ◽  
J. Roscoe ◽  
...  

Soybean rust, caused by the fungus Phakopsora pachyrhizi, was detected on jicama (Pachyrhizus erosus L. Urban) for the first time in the United States in November 2009. The pathogen was observed on leaves of a single, potted jicama plant grown outdoors in a residential area and on leaves of all plants in a 12-m2 demonstration plot located at the Auburn University Teaching Garden in Auburn, AL. Symptoms on the upper leaf surfaces were isolated chlorotic areas near the leaf edges in the lower part of the canopy. The abaxial surface was first observed to exhibit brown lesions and subsequently produced volcano-shaped uredinia. These symptoms are consistent with a rust previously described on jicama in Mexico (1). Representative symptomatic plant tissue was sent to the USDA National Identification Services (Mycology) Laboratory in Beltsville, MD for diagnostic confirmation at both the Urbana, IL lab and the USDA National Plant Germplasm and Biotechnology Laboratory for DNA testing. From an infected leaf, samples of approximately 5 mm2 were excised from a microscopically observed rust lesion and an apparently noninfected area. Total DNA was purified with the FastDNA Spin Kit (MP Biomedicals, Solon, OH) followed by the E.Z.N.A. MicroElute DNA Clean-Up Kit (Omega Bio-tek, Inc, Doraville, GA) per manufacturer's instructions. Detection of P. pachyrhizi and P. meibomiae DNA was achieved by quantitative PCR using the method of Frederick et al. (2) and a DNA standard of previously prepared P. pachyrhizi spores. The observed rust pustule was found to contain P. pachyrhizi DNA in excess of 28,000 genomes, while no P. pachyrhizi DNA was observed from the asymptomatic sample. Both samples were negative for P. meibomiae. The fungal structures present were confirmed to be Phakopsora spp. DNA was extracted from sori aseptically removed from leaves with a Qiagen (Valencia, CA) DNeasy Plant Mini Kit and amplified with primers Ppa1 and NL4. The resulting partial ITS2 and 28S ribosomal RNA sequences were 100% identical to GenBank entry DQ354537 P. pachyrhizi internal transcribed spacer 2 and 28S ribosomal RNA gene, partial sequence. Sequences from jicama from Alabama were deposited in GenBank. Voucher specimens were deposited in the USDA Agricultural Research Service, National Fungus Collection (BPI). To our knowledge, this is the first report of the disease on jicama in the United States. References: (1) A. Cárcamo Rodriguez et al. Plant Dis. 90:1260, 2006. (2) R. D. Frederick et al. Phytopathology 92:217, 2002.


Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 1065-1065 ◽  
Author(s):  
T. L. B. Tarnowski ◽  
R. C. Ploetz

Postharvest anthracnose of papaya, Carica papaya, is an important disease in most production areas worldwide (2). Colletotrichum gloeosporioides causes two types of anthracnose symptoms on papaya: (i) circular, sunken lesions with pink sporulation; and (ii) sharply defined, reddish brown and sunken lesions, described as ‘chocolate spot’ (2). Colletorichum spp. were isolated from lesions of the first type on papaya fruit from the University of Florida Tropical Research and Education Center, Homestead in December 2007 and from fruit imported from Belize in March 2008 (4). Single-spore isolates were identified using colony morphology and internal transcribed spacer (ITS) and mating type (MAT1-2) sequences. Two taxa were identified in both locations: (i) C. gloeosporioides (MAT1-2; GenBank Nos. GQ925065 and GQ925066) with white-to-gray, fluffy colonies with orange sporulation and straight and cylindrical conidia; and (ii) C. capsici (ITS; GenBank Nos. GU045511 to GU045514) with sparse, fluffy, white colonies with setose acervuli and falcate conidia. In addition, in Florida, a Glomerella sp. (ITS; GenBank Nos. GU045518 and GU045520 to GU045522) was recovered with darkly pigmented colonies that produced fertile perithecia after 7 to 10 days on potato dextrose agar (PDA). In each of three experiments, mature fruit (cv. Caribbean Red) were wounded with a sterile needle and inoculated with a 15-μl drop of 0.3% water agar that contained 105 conidia ml–1 of representative isolates of each taxon. The diameters of developing lesions were measured after 7 days of incubation in the dark at 25°C, and the presence of inoculated isolates was confirmed by their recovery from lesion margins on PDA. In all experiments, C. capsici and C. gloeosporioides produced lesions that were significantly larger than those that were caused by the water control and Glomerella sp. (respectively, approximately 12, 17, 0, and <1 mm in diameter). C. gloeosporioides produced sunken lesions with dark gray centers and pink/gray sporulation, which match those previously described for anthracnose on papaya (2). In contrast, C. capsici produced dark lesions due to copious setae of this pathogen; they resembled C. capsici-induced lesions on papaya that were reported previously from the Yucatan Peninsula (3). C. capsici has also been reported to cause papaya anthracnose in Asia (4), but to our knowledge, this is the first time it has been reported to cause this disease in Florida. Since it was also recovered from fruit that were imported from Belize, it probably causes anthracnose of papaya in that country as well. Another falcate-spored species, C. falcatum, was recovered from rotted papaya fruit in Texas (1). The Glomerella sp. was recovered previously from other hosts as an endophyte and causes anthracnose lesions on passionfruit (4). However, its role as a pathogen on papaya is uncertain since it was not pathogenic in the current work; the isolates that were recovered from papaya lesions may have colonized lesions that were caused by C. capsici and C. gloeosporioides. References: (1) Anonymous. Index of Plant Diseases in the United States. U.S. Dept. of Agric. Handb. No. 165. Washington, D.C., 1960. (2) D. M. Persley and R. C. Ploetz. Page 373 in: Diseases of Tropical Fruit Crops. R. C. Ploetz, ed. CABI Publishing. Wallingford, UK, 2003. (3) R. Tapia-Tussell et al. Mol Biotechnol 40:293, 2008. (4) T. L. Tarnowski. Ph.D. diss. University Florida, Gainesville, 2009.


2010 ◽  
Vol 11 (1) ◽  
pp. 5 ◽  
Author(s):  
Stephen R. Koenning ◽  
J. Allen Wrather

Research must focus on management of diseases that cause extensive losses, especially when funds for research are limited. Knowledge of the losses caused by various soybean diseases is essential when prioritizing research budgets. The objective of this project was to compile estimates of soybean yield potential losses caused by diseases for each soybean producing state in the United States from 2006 to 2009. This data is of special interest since the 4-year period summarized in this report, permits an examination of the impact of soybean rust that was first reported in the United States in 2004. Thus, in addition to the goal of providing this information to aid funding agencies and scientists in prioritizing research objectives and budgets, an examination of the impact of soybean rust on soybean yield losses relative to other diseases is warranted. Yield losses caused by individual diseases varied among states and years. Soybean cyst nematode caused more yield losses than any other disease during 2006 to 2009. Seedling diseases, Phytophthora root and stem rot, sudden death syndrome, Sclerotinia stem rot, and charcoal rot ranked in the top six of diseases that caused yield loss during these years. Soybean yield losses due to soybean rust and Sclerotinia stem rot varied greatly over years, especially when compared to other diseases. Accepted for publication 21 October 2010. Published 22 November 2010.


2012 ◽  
Vol 34 (2) ◽  
pp. 225-230
Author(s):  
Elisandra Batista Zambenedetti Magnani ◽  
Elisabeth Aparecida Furtado de Mendonça ◽  
Maria Cristina de Figueiredo e Albuquerque

To study adhesion and viability of uredospores of the fungus Phakopsora pachyrhizi on soybean seeds during storage, suspension tests of those uredospores were carried out by washing seeds at each 30 days interval. Furthermore, germination and inoculation tests of uredospores on soybean plants were performed with uredospores collected from seeds of two soybean production areas, located in the municipalities "Chapada dos Guimarães" and "Tangará da Serra", State of Mato Grosso, Brazil. High levels of uredospores infestation were detected before storage [249.31 and 85.18 uredospores/100 seeds (U/100)] on seeds collected in both localities, respectively. After 30 days storage, these figures were 46.12 and 122.5 U/100; at 60 days were 14.62 and 26.62 U/100; and at 90 days were only 2.87 and 3,68 U/100, respectively; dropping to zero after 120 days storage. The percentage of germinated uredospores decreased with increasing storage periods and at 120 days germination percentage was nil. When uredospores were inoculated on soybean plants, rust symptoms were only observed for uredospores collected from freshly harvested seeds. Uredospores associated to soybean seed germinate until 90 days after storage, but are not viable after this time span. Infection of plants only occurs with inoculation of uredospores obtained from freshly harvested seeds.


2016 ◽  
Vol 17 (4) ◽  
pp. 239-244 ◽  
Author(s):  
Edward J. Sikora ◽  
Mary A. Delaney

Soybean rust (SBR), caused by Phakopsora pachyrhizi, is considered to be one of the most damaging diseases of soybean worldwide. Monitoring for the disease in Alabama relies heavily on scouting kudzu on a biweekly basis in south and central portions of the state from late January through the end of July in areas where soybean production is minimal and is critical to help growers avoid significant yield losses from SBR. Previous studies have reported that some kudzu populations are naturally resistant or immune to infection from the pathogen which can complicate early disease detection. This study will apply that knowledge to determine locations of kudzu populations that are either resistant or susceptible to P. pachyrhizi in order to increase monitoring efficiency and reduce costs associated with the scouting program. Results show that approximately 34% of the 162 kudzu sites tested in Alabama were resistant to P. pachyrhizi. By focusing scouting efforts on SBR-susceptible kudzu sites, we will reduce costs associated with the monitoring program by approximately 25% which is critical at a time when funding for such efforts is decreasing. Accepted for publication 24 October 2016.


2020 ◽  
Vol 34 (5) ◽  
pp. 699-703
Author(s):  
Jason K. Norsworthy ◽  
Jacob Richburg ◽  
Tom Barber ◽  
Trenton L. Roberts ◽  
Edward Gbur

AbstractAtrazine offers growers a reliable option to control a broad spectrum of weeds in grain sorghum production systems when applied PRE or POST. However, because of the extensive use of atrazine in grain sorghum and corn, it has been found in groundwater in the United States. Given this issue, field experiments were conducted in 2017 and 2018 in Fayetteville and Marianna, Arkansas, to explore the tolerance of grain sorghum to applications of assorted photosystem II (PSII)-inhibiting herbicides in combination with S-metolachlor (PRE and POST) or mesotrione (POST only) as atrazine replacements. All experiments were designed as a factorial, randomized complete block; the two factors were (1) PSII herbicide and (2) the herbicide added to create the mixture. The PSII herbicides were prometryn, ametryn, simazine, fluometuron, metribuzin, linuron, diuron, atrazine, and propazine. The second factor consisted of either no additional herbicide, S-metolachlor, or mesotrione; however, mesotrione was excluded in the PRE experiments. Crop injury estimates, height, and yield data were collected or calculated in both studies. In the PRE study, injury was less than 10% for all treatments except those containing simazine, which caused 11% injury 28 d after application (DAA). Averaged over PSII herbicide, S-metolachlor–containing treatments caused 7% injury at 14 and 28 DAA. Grain sorghum in atrazine-containing treatments yielded 97% of the nontreated. Grain sorghum receiving other herbicide treatments had significant yield loss due to crop injury, compared with atrazine-containing treatments. In the POST study, ametryn- and prometryn-containing treatments were more injurious than all other treatments 14 DAA. Grain sorghum yield in all POST treatments was comparable to atrazine, except prometryn plus mesotrione, which was 65% of the nontreated. More herbicides should be evaluated to find a comparable fit to atrazine when applied PRE in grain sorghum. However, when applied POST, diuron, fluometuron, linuron, metribuzin, propazine, and simazine have some potential to replace atrazine in terms of crop tolerance and should be further tested as part of a weed control program across a greater range of environments.


Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 96-105 ◽  
Author(s):  
M. R. Miles ◽  
W. Morel ◽  
J. D. Ray ◽  
J. R. Smith ◽  
R. D. Frederick ◽  
...  

Five hundred thirty soybean accessions from maturity groups (MG) III through IX were evaluated for resistance to Phakopsora pachyrhizi in a replicated field trial at Centro Regional de Investigación Agrícola in Capitán Miranda, Itapúa, Paraguay during the 2005–06 season. Soybean rust severities of individual accessions ranged from 0% (resistant) to 30.0% (susceptible). In MG III and IV, the most resistant accessions were PI 506863, PI 567341, and PI 567351B, with severities less than 1.2%. In MG V, the most resistant accessions were PI 181456, PI 398288, PI 404134B, and PI 507305, with severities less than 0.3%. In MG VI, the most resistant accessions were PI 587886, PI 587880A, and PI 587880B, with severities less than 0.3%. In MG VII and VIII, the most resistant were PI 587905 and PI 605779E, with severities less than 1.0%. In MG IX, the most resistant accessions were PI 594754, PI 605833, PI 576102B, and PI 567104B, with severities less than 1.0%. The resistance in 10 selected accessions from MG VI, VII, VIII, and XI was confirmed in subsequent greenhouse and field experiments where severities of 0.4% or less and reddish-brown lesions with sporulation levels less than 3.0 were observed. These accessions, with low severities in the adult plant field evaluation, may be new sources of resistance to P. pachyrhizi.


Sign in / Sign up

Export Citation Format

Share Document