scholarly journals First Report on Natural Occurrence of Tomato Spotted Wilt Tospovirus in Basil (Ocimum basilicum)

Plant Disease ◽  
1999 ◽  
Vol 83 (10) ◽  
pp. 966-966 ◽  
Author(s):  
G. E. Holcomb ◽  
R. A. Valverde ◽  
J. Sim ◽  
J. Nuss

Virus-like symptoms were observed on basil plants (Ocimum basilicum L. ‘Mrs. Burns Lemon’ [MBL]) growing in containers and a demonstration plot at the Louisiana State University Burden Research Plantation, Baton Rouge, during July 1998. Symptoms consisted of ring spots, leaf distortion, and severe mosaic. Mechanical transmission of the suspect virus by sap inoculation from infected MBL to basil cvs. MBL, Aussie Sweet, Cinnamon, Siam Queen, and Sweet Dani was successful. Symptoms were similar to those on infected MBL. Nicotiana benthamiana Domin. reacted with local chlorotic spots followed by severe yellows, necrosis, and death. Electron microscopy of thin sections of infected basil revealed virus inclusions but no virus particles. However, infected N. benthamiana revealed the presence of 82-nm membrane-bound particles in the cytoplasm. The virus was identified from basil and N. benthamiana as the common strain of tomato spotted wilt tospovirus (TSWV) by enzyme-linked immunosorbent assay (Agdia, Elkhart, IN). An outbreak of thrips insects during the summer drought in 1998 was probably responsible for the occurrence of TSWV in basil. This is the first report of the occurrence of TSWV in basil (1). Reference: (1) A. A. Brunt et al., eds. 1996. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Published online by Australian National University, Canberra.

Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 295-295 ◽  
Author(s):  
W. M. Wintermantel ◽  
E. T. Natwick

Basil (Ocimum basilicum L.) plants collected from three fields in Imperial County, CA in May, 2011 were found to be exhibiting yellowing, chlorotic sectors and spots on leaves, resulting in unmarketable plants. Dodder (Cuscuta spp.) was present in one of the fields, but was not visibly associated with symptomatic plants. Total nucleic acid was extracted from four symptomatic and three asymptomatic basil plants, as well as from the dodder plant with the RNeasy Plant Mini Kit (Qiagen, Valencia, CA). Nucleic acid extracts were tested by reverse transcription (RT)-PCR for the presence of Alfalfa mosaic virus (AMV) using primers designed to amplify a 350-nt region of the AMV coat protein gene (3). RT-PCR produced bands of the expected size in extracts from all symptomatic plants and the dodder sample. No amplification was obtained from symptomless plants. A 350-nt band amplified from one plant was gel-extracted, sequenced (TACGen, Richmond, CA), and confirmed to be AMV by comparison to sequences available in GenBank (Accession No. K02703). Although serological tests on an initial basil sample were negative for AMV by ELISA using antiserum produced against AMV by R. Larsen, USDA-ARS, Prosser, WA (unpublished), AMV was confirmed by ELISA and RT-PCR in symptomatic Nicotiana benthamiana, N. clevelandii, and Malva parviflora plants following mechanical transmission from basil source plants. The fields with AMV infections were located at opposite ends of the production region from one another, indicating widespread dispersal of AMV in the region. All AMV positive plants were adjacent to alfalfa. Two additional basil plantings in shade houses open to the outside environment did not have AMV symptomatic plants and were also confirmed negative by RT-PCR, but these plantings were at the extreme north end of Imperial Valley agriculture and well away from any alfalfa fields. At the time the basil plantations were sampled for AMV, no aphids were found in any plantations, but during the several weeks prior to finding the AMV-positive plants, cowpea aphid, Aphis craccivora Koch; pea aphid, Acyrthosiphon pisum Harris; blue alfalfa aphid, Acyrthosiphon kondoi Shinji; and spotted alfalfa aphid, Therioaphis maculata Buckton were colonizing Imperial Valley alfalfa fields, producing winged adults. AMV is transmitted by at least 14 aphid species (1), and most aphid populations increase during the late spring in this important desert agricultural region. The acquisition of AMV by dodder suggests the parasitic plant may serve as a vector of AMV within basil fields, although further study will be necessary for clarification. Significant acreage of basil is grown in the Imperial Valley. This acreage is surrounded by extensive and increasing alfalfa production totaling 55,442 ha (137,000 acres) in Imperial County and representing a 21% increase in acreage over 2009 for the same region (2). To our knowledge, this is the first report of basil infected by AMV in California. The proximity of basil production to such a large alfalfa production region warrants the need for enhanced efforts at aphid management in basil production to reduce vector populations and reduce transmission to basil crops. References: (1) E. M. Jaspars and L. Bos. Alfalfa mosaic virus. No. 229 in: Descriptions of Plant Viruses. Commonw. Mycol. Inst./Assoc. Appl. Biol., Kew, England, 1980. (2) C. Valenzuela. Imperial County California Crop and Livestock Report, 2010. (3) H. Xu and J. Nie. Phytopathology 96:1237, 2006.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 442-442 ◽  
Author(s):  
R. Pourrahim ◽  
Sh. Farzadfar ◽  
A. A. Moini ◽  
N. Shahraeen ◽  
A. Ahoonmanesh

Severe leaf and stem necrosis before flowering was observed in potato (Solanum tuberosum) fields of Firouzkoh Province, Iran, during the summer of 1998. Infected plants died before the end of the growing season. Necrosis was more severe in cv. Agria than in cvs. Ajaxs and Arinda. A high population of Thrips tabaci was observed in August and September. Tomato spotted wilt virus (TSWV) (1) was detected in affected potatoes by using specific TSWV-IgG (from Bioreba) in double-antibody sandwich enzyme linked immunosorbent assay and by indicator plant reactions. Mechanical inoculation of indicator plants with leaf extracts of symptomatic potatoes produce necrotic local lesions in Chenopodium quinoa, C. amaranticolor, Gomphrena globosa, Vicia faba, Vigna sinensis, Phaseolus aureus var. Gohar, P. vulgaris, and Petunia hybrida. The virus caused systemic necrosis in Capsicum frutescens, Datura stramonium, D. metel, Nicotiana glutinosa, N. rustica, and Trapaeolum majus, preceded by systemic chlorotic spots. TSWV was reported from ornamental crops in Tehran and Absard areas near to Firouzkoh province (2), but this is the first report of TSWV occurrence on potatoes in Iran. References: (1) T. S. Ie. Descriptions of Plant Viruses. No. 39, 1970. (2) A. A. Moeini, et al. Iran. J. Plant Pathol. (In press.)


Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 102-102 ◽  
Author(s):  
S. Adkins ◽  
L. Breman ◽  
C. A. Baker ◽  
S. Wilson

Blackberry lily (Belamcanda chinensis (L.) DC.) is an herbaceous perennial in the Iridaceae characterized by purple-spotted orange flowers followed by persistent clusters of black fruit. In July 2002, virus-like symptoms including chlorotic ringspots and ring patterns were observed on blackberry lily leaves on 2 of 10 plants in a south Florida ornamental demonstration garden. Inclusion body morphology suggested the presence of a Tospovirus. Tomato spotted wilt virus (TSWV) was specifically identified by serological testing using enzyme-linked immunosorbent assay (Agdia, Elkhart, IN). Sequence analysis of a nucleocapsid (N) protein gene fragment amplified by reverse transcription-polymerase chain reaction (RT-PCR) with primers TSWV723 and TSWV722 (1) from total RNA confirmed the diagnosis. Nucleotide and deduced amino acid sequences of a 579 base pair region of the RT-PCR product were 95 to 99% and 95 to 100% identical, respectively, to TSWV N-gene sequences in GenBank. Since these 2-year-old plants were grown on-site from seed, they were likely inoculated by thrips from a nearby source. Together with a previous observation of TSWV in north Florida nursery stock (L. Breman, unpublished), this represents, to our knowledge, the first report of TSWV infection of blackberry lily in North America although TSWV was observed in plants of this species in Japan 25 years ago (2). References: (1) S. Adkins, and E. N. Rosskopf. Plant Dis. 86:1310, 2002. (2) T. Yamamoto and K.-I. Ohata. Bull. Shikoku Agric. Exp. Stn. 30:39, 1977.


Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 433-433 ◽  
Author(s):  
L. Svanella-Dumas ◽  
A. Marais ◽  
P. Gentit ◽  
J. Lamorte ◽  
T. Candresse

Cherry virus A (CVA) is a member of the Capillovirus genus (2). It was discovered serendipitously during cloning of the little cherry agent (2) and has since been shown to be relatively widespread in sweet and sour cherry (Prunus cerasus and P. avium) (2,3). It is currently unclear whether CVA is associated with any specific symptoms in these hosts. Although it can be transmitted by grafting and thus propagated in peach, it has not been reported to naturally infect any host other than cherry. Using a degenerate reverse transcription-polymerase chain reaction (RT-PCR) technique targeting a conserved region of the RNA-dependent RNA polymerase (RdRp) and allowing the amplification of members of the Trichovirus, Capillovirus, and Foveavirus genera of filamentous plant viruses (1), a number of symptomatic Prunus spp. germplasm were evaluated. Among these, a cv. Mirabelle dorée accession (Prunus domestica var. insititia P332) of French origin exhibited severe symptoms of rosetting, severe leaf and fruit deformation, and yellow mosaic occasionally turning necrotic. RT-PCR conducted on symptomatic samples produced an amplification product of the expected size (362 bp) in several independent experiments. Sequencing of these products yielded a single sequence (GenBank Accession No. AY792509) with 88.1% nucleotide identity and 93.2% amino acid identity with the type strain of CVA (2). Presence of a CVA isolate was independently confirmed using a CVA-specific PCR assay directly on the original plum material or following experimental transmission by grafting on several new hosts including apricot (P. armeniaca cv. Priana) and plum (P. domestica cv. Prune d'Ente). To our knowledge, this is the first report of natural infection of CVA in plum. The symptoms observed in the infected plum are reminiscent of those caused by severe Prune dwarf virus (PDV) strains. Infection by PDV was confirmed using a PDV-specific PCR assay. The contribution, if any, of CVA to the symptoms observed remains to be evaluated. These findings suggest that the possible presence of CVA in noncherry Prunus spp. hosts should be taken into consideration by quarantine and certification programs. References: (1) X. Foissac et al. Acta Hortic. 550:3743, 2001. (2) W. Jelkmann. J. Gen. Virol. 76:2015, 1995. (3) M. J. Kirby et al. Plant Pathol. 50:6, 2001.


Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 377-377 ◽  
Author(s):  
J. Wang ◽  
Z. Liu ◽  
S. Niu ◽  
M. Peng ◽  
D. Wang ◽  
...  

An outbreak of a viral disease on chili pepper (Capsicum chinense Jacp. cv. Yellow Lantern) occurred in Hainan Province, China during 2003 and 2004. The disease was prevalent in five chili-producing counties surveyed. Leaves of infected plants initially displayed symptoms of dark green banding along veins and later became distorted with striking mosaic. Infected plants had reduced flower numbers and fruit set, resulting in a significant yield loss. The causative virus was characterized and identified as Chilli veinal mottle virus (ChiVMV) (3). An isolate of the virus was obtained via three single lesion passages through Chenopodium amaranticolor and was shown to reproduce the same symptoms on inoculated C. chinense cv. Yellow Lantern. Negative staining of crude extracts of the infected tissue and subsequent electron microscopy revealed flexuous rods of 12 to 13 × 750 nm, typical of a potyvirus. Pinwheel-like inclusion bodies were abundant in thin sections of infected leaves. Purified virus preparations contained one major protein of 32.8 kDa and one minor protein of 28 kDa when fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both of these protein bands were excised and subsequently analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Multiple peptide fragments from both proteins were identified as arising from ChiVMV capsid protein (CP) (1,2). Therefore, the 32.8-kDa protein is the full-length ChiVMV CP and the 28-kDa protein is presumably a degradation product of the CP. The combined biological and molecular data provided strong evidence that the viral disease on C. chinense was caused by ChiVMV. To our knowledge, this is the first report of ChiVMV infection on C. chinense in China and the first report of C. amaranticolor as an experimental host for ChiVMV. References: (1) P. Chiemsombat et al. Arch. Virol. 143:1855, 1998. (2). J. Joseph and H. S. Savithri. Arch. Virol. 144:1679, 1999. (3) P. Siriwong et al. Plant Pathol. 44:718, 1995.


Plant Disease ◽  
2001 ◽  
Vol 85 (12) ◽  
pp. 1290-1290 ◽  
Author(s):  
A. R. Golnaraghi ◽  
N. Shahraeen ◽  
R. Pourrahim ◽  
Sh. Ghorbani ◽  
Sh. Farzadfar

During the summers of 1999 and 2000, 3,110 soybean (Glycine max) leaf samples were randomly collected from soybean fields in the Ardebil, Goletan, Khuzestan, Lorestan, and Mazandaran provinces of Iran. Tomato spotted wilt virus (TSWV) was detected in leaf samples by TSWV-specific polyclonal antibody (As-0526 and As-0580, DSMZ, Braunschweig, Germany) in double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Mechanical inoculation of 26 plant species (10 plants per species) and cultivars with extracts of positive leaf samples produced necrotic local lesions in Beta vulgaris, Chenopodium quinoa, C. amaranticolor, Gomphrena globosa, Phaseolus vulgaris cv. Talash, Vicia faba, and Vigna unguiculata cv. Mashad; produced systemic chlorosis followed by necrosis in Datura stramonium, D. metel, Nicotiana rustica, N. tabacum cv. Samsun, N. glutinosa, N. bentamiana, and Glycine max cv. Hill; and produced chlorosis, stunting, and bud necrosis in Arachis hypogaea (peanut). Plants developing these symptoms following mechanical inoculation with extracts from original soybean leaves were positive in ELISA for TSWV. ELISA results indicate that the overall incidence of TSWV on soybean in the five provinces was 5.4%. TSWV has been reported in potato (2) and tomato (1) from Iran, but to our knowledge, this is the first report of the occurrence of TSWV on soybean in Iran. References: (1) K. Bananej et al. Iran. J. Plant Pathol. 34:30, 1998. (2) R. Pourrahim et al. Plant Dis. 85:442, 2001.


Plant Disease ◽  
1997 ◽  
Vol 81 (11) ◽  
pp. 1331-1331 ◽  
Author(s):  
J. R. Fisher ◽  
M.-C. Sanchez-Cuevas ◽  
S. T. Nameth ◽  
V. L. Woods ◽  
C. W. Ellett

Eryngium amethystinum (amethyst sea holly) is a herbaceous plant commonly grown as an ornamental perennial in U.S.D.A. hardiness zones 3 to 8. The plant thrives in dry areas with infertile soils and the flowers are often used in dried floral arrangements. Canna spp. (Canna), soft perennials (U.S.D.A. zone 9 and above), are becoming popular flowering plants because of their bright flowers and spectacular foliage. There are a variety of species that fall under the heading Canna spp., of which the most popular are C. glauca, C. indica, C. edulis, and C. iridiflora. Hybrids of Aquilegia (garden columbine), a hardy perennial (U.S.D.A. zones 3 to 9), flower in late spring through early summer. The genus is made up of a wide variety of cultivars. E. amethystinum exhibiting severe mosaic, yellowing, and stunting, along with Canna plants exhibiting severe stunting, chlorotic and distorted foliage, and mosaic, and garden columbine plants exhibiting stunting, leaf curl, chlorosis, and mosaic, collected from commercial plantings throughout the central Ohio area, were analyzed for the presence of virus infection with viral-associated, double-stranded RNA (dsRNA) analysis. dsRNA analysis resulted in a banding profile typical of that seen with members of the cucumovirus family of plant viruses. Plants positive for cucumovurus-like dsRNA were tested with a direct antibody sandwich enzyme-linked immunosorbent assay (ELISA). ELISA results confirmed the presence of cucumber mosaic virus (CMV) in all symptomatic plants tested. No evidence of dsRNA or CMV was found in any of the asymptomatic plants tested. Because all of these hosts are common in the perennial garden, they could serve as a reservoir host of CMV for other plants in the garden. This is the first report of CMV in E. amethystinum, Canna spp., and Aquilegia hybrids in Ohio.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1162-1162 ◽  
Author(s):  
E. Segundo ◽  
F. M. Gil-Salas ◽  
D. Janssen ◽  
G. Martin ◽  
I. M. Cuadrado ◽  
...  

Common bean (Phaseolus vulgaris L.) is grown on approximately 1,500 ha in commercial greenhouses and is of major economic importance in the Souss-Massa Region, Agadir, Morocco. Since October 2003, symptoms resembling a viral disease, consisting of pod mosaic and distortion and mild to severe mosaic in leaves, have been observed on bean plants in several greenhouses. Mechanical inoculation with symptomatic leaf extracts produced necrotic local lesions on P. vulgaris ‘Pinto’ and systemic symptoms similar to those observed in the naturally infected bean plants P. vulgaris ‘Donna’ (five plants per cultivar). Inoculated and naturally infected samples reacted positively using a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to Southern bean mosaic virus (SBMV) (DSMZ, Braunschweig, Germany), a member of the Sobemovirus genus that is transmitted by contact, soil, beetles, and seeds (1). Virions purified from a naturally infected ‘Donna’ plant contained a 30-kDa polypeptide that reacted positively using sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blot analysis with SBMV antiserum (DSMZ). Reverse transcription-polymerase chain reaction amplification with SMBV primers as described by Verhoeven et al. (2) produced an expected 870-bp band. The amplicon was cloned, sequenced (GenBank Accession No. AJ748276), and compared to those isolates available in GenBank and had a nucleotide sequence identity of 87% and a derived amino acid sequence identity of 95% with an SBMV isolate from Spain (2). During a survey in different areas of the Souss-Massa Region, 20 symptomatic leaf and pod samples were randomly collected from 12 greenhouses (50 ha) where significant commercial losses were suffered because of this virus disease, and all samples were positive using DAS-ELISA for SBMV. To our knowledge, this is the first report of SBMV in Morocco. References: (1) J. H. Tremaine and R. I. Hamilton. Southern bean mosaic virus. No. 274 in: Descriptions of Plant Viruses. CMI/AAB, Kew, Surrey, England, 1983. (2) J. Th. J. Verhoeven et al. Eur. J. Plant Pathol. 109:935, 2003.


Plant Disease ◽  
2021 ◽  
Author(s):  
Elżbieta Dąbrowska ◽  
Elżbieta Paduch-Cichal ◽  
Patrycja Piasna ◽  
Tadeusz Malewski ◽  
Ewa Mirzwa-Mróz

Raspberry (Rubus idaeus L.) and blackberry (Rubus fruticosus L.) are infected by at least 29 viruses, including the Tomato black ring virus (TBRV) (Martin et al. 2013). TBRV belongs to the genus Nepovirus (subgroup B) of the family Secoviridae and is listed as a plant pathogen in over 40 countries. TBRV infects a wide range of herbaceous and woody plants. In Poland, TBRV has been described on the plants of the following species: Tagetes patula, T. erecta, Cucumis sativus, Cucurbita pepo, Lactuca sativa, Solanum tuberosum, S. lycopersicum, Sambucus nigra, and Robinia pseudoacacia (Jończyk et al. 2004, Hasiów-Jaroszewska et al. 2015). To this date, there is no information on the incidence of TBRV in raspberry and blackberry in Poland. In the spring of 2019, 52 blackberry leaf samples and 408 raspberry leaf samples were collected from 4 plantations located in central Poland. None of the raspberry plants (cvs. Glen Ample, Polka, Sokolica), nor the blackberry plants (cvs. Thornfree, Polar, Gaj, Kotata) exhibited viral symptoms. Enzyme-linked immunosorbent assay (ELISA) was carried out for extracts from the 460 collected leaf samples to detect TBRV using commercial antisera (Loewe Biochemica GmbH, Germany). The results indicated that 9 samples (4 blackberry, 5 raspberry) were infected with TBRV. The isolates of the virus were transferred by sap inoculation and maintained in Nicotiana tabacum cv. Xanthi. Systemic ringspot, necrosis and patterned lines were observed on tobacco leaves. The presence of the virus in tobacco leaf samples was confirmed by reverse transcription PCR (RT-PCR). Total RNA was extracted from all 9 samples using the silica capture (SC) method described originally by Boom et al. (1990) and adapted to the detection of plant viruses by Malinowski (1997). Part of the CP gene was amplified with the CPF (5’-GCCTGTCTCTCTCGCAATG-3’) and CPR (5’-AAGGAGCCAAACTGAAATGT-3’) primer pair (Hasiów-Jaroszewska et al. 2015). Amplicons of the expected size (763 bp) were obtained for each sample. The amplified products were purified, sequenced in both directions, deposited in GenBank and assigned accession numbers: MT507387 to MT507390 and MT507394 for the isolates from Rubus idaeus and MT507391 to MT507393 and MN954654 for the isolates from Rubus fruticosus, respectively. The 9 newly obtained TBRV CP gene sequences, together with the 25 isolates deposited in GenBank, were aligned by ClustalW. The isolates obtained in this study showed a 99.0-100% nucleotides (nt) and a 98.7-100% amino acids (aa) identity in the part of the CP, respectively. Comparison of the part of the CP of the 4 blackberry and the 5 raspberry TBRV isolates with 25 TBRV isolates available in GenBank showed a 80.6-97.8% nt and a 87.9-99.5% aa identity, respectively. The results of the phylogenetic analysis have revealed that the TBRV isolates obtained in this study are closely related to 3 Polish isolates (AY157994, KR139941, KR139951) and 1 Bioreba ctrl Switzerland isolate (KT923164). These findings are of epidemiological significance due to the fact that TBRV was detected on symptomless Rubus plants, which therefore represent a reservoir of the virus and a threat in case of a symptomatic infection of sensitive cultivars. Accordingly, the results will assist in using appropriate strategies for reducing TBRV incidence in Rubus-growing areas. Moreover, this is, to the best of our knowledge, the first report of TBRV in raspberry and blackberry in Poland.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 524-524 ◽  
Author(s):  
C. Nischwitz ◽  
S. W. Mullis ◽  
R. D. Gitaitis ◽  
A. S. Csinos

Tomato spotted wilt virus (TSWV) is a member of the family Bunyaviridae and has a wide host range including important crops such as tomato, pepper, tobacco, peanut, and onion. In areas of Georgia, soybean (Glycine max) is double cropped between two onion crops and as a rotation crop with peanuts. Soybeans do not show any TSWV symptoms, and therefore, have not been tested on a large scale for the virus. However, because symptomless weed and crop plants provide a reservoir for TSWV and the thrips vectors (2), a survey was conducted during the summer of 2005 to evaluate the occurrence of TSWV in soybean. The survey took place in seven counties in southern Georgia with field sizes ranging between 0.4 and 20 ha (1 and 50 acres). Soybean cultivars included Haskell, DP7220, DP6770, Pioneer 97B52, and Vigoro V622NRR. Of 848 randomly selected plants tested using the double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) (Agdia, Inc., Elkhart, IN), 6.6% tested positive for TSWV. Plants testing positive ranged from seedling to the pod-setting stages. Leaves and roots of several plants tested positive, indicating a systemic infection. Soybean plants testing positive using ELISA were blotted onto FTA cards (Whatman Inc., Brentford, UK) to bind viral RNA for preservation, and the blotted samples were processed according to the manufacturer's protocol. Reverse transcription-polymerase chain reaction using punch-outs from the FTA cards and TSWV nucleocapsid gene specific forward and reverse primers (5′-TTAAGCAAGTTCTGTGAG-3′ and 5′-ATGTCTAAGGTTAAGCTC-3′), respectively (4), confirmed the identity of TSWV. TSWV has been found in soybean in other parts of the world (1) but has only been reported in the United States in a survey from Tennessee (3). To our knowledge, this is the first report of the occurrence of TSWV in soybean in Georgia. The role soybean plays as a reservoir or green bridge for thrips and TSWV is currently unknown. References: (1) A. R. Golnaraghi et al. Plant Dis. 88:1069, 2004. (2) R. L. Groves et al. Phytopathology 91:891, 2001. (3) B. S. Kennedy and B. B. Reddick. Soybean Genet. Newsl. 22:197, 1995. (4) H. R. Pappu et al. Tob. Sci. 40:74, 1996.


Sign in / Sign up

Export Citation Format

Share Document