scholarly journals Races of Phytophthora sojae on Soybean in Illinois

Plant Disease ◽  
2000 ◽  
Vol 84 (4) ◽  
pp. 487-487 ◽  
Author(s):  
R. A. Leitz ◽  
G. L. Hartman ◽  
W. L. Pedersen ◽  
C. D. Nickell

Phytophthora root rot of soybean (Glycine max (L.) Merr.), caused by Phytophthora sojae M. J. Kauffmann & J. W. Gerdemann, has been isolated throughout the soybean-producing regions of the United States. There are more than 39 identified races of P. sojae pathogenic on soybean, and 13 host resistance alleles have been identified at 7 loci (1). None of these alleles confers resistance to all races of P. sojae. The most commonly used resistance allele, Rps1k, confers resistance to the greatest number of races (2). The objective of this study was to identify races of P. sojae in Illinois soybean fields to determine whether the currently used resistance alleles are effective against the P. sojae races found in Illinois. Soybean breeders must be aware of the existence and distribution of races to incorporate appropriate sources of genetic resistance into cultivars. From 192 soil samples collected throughout Illinois in 1997, 33 isolates were obtained and identified to race by inoculating Rps isolines of soybean cv. Williams. A new race with virulence to the Rps1d and Rps7 alleles, designated as race 54, accounted for 48% of the isolates. Another new race with virulence to Rps1d, Rps3a, Rps3c, Rps4, Rps5, Rps6, and Rps7 alleles, designated race 55, was identified in one sample. One isolate, identified as race 41, was obtained from a diseased plant with the Rps1k allele. Another isolate, identified as race 43, was obtained from a diseased plant with the Rps1c allele. Based on virulence patterns of P. sojae, most of the isolates obtained from Illinois soils were races 1, 3, and 4 or variants of these races, such as race 54, with added virulence to the Rps1d allele. References: (1) A. F. Schmitthenner. 1999. Compendium of Soybean Diseases. 4th ed. G. L. Hartman, J. B. Sinclair, and J. C. Rupe, eds. The American Phytopathological Society, St. Paul, MN. pp. 39‐42. (2) A. F. Schmitthenner, M. Hobe, and R. G. Bhat. Plant Dis. 78:269, 1994

2000 ◽  
Vol 1 (1) ◽  
pp. 32
Author(s):  
R. A. Leitz ◽  
G. L. Hartman ◽  
W. L. Pedersen ◽  
C. D. Nickell

Phytophthora root rot of soybean (Glycine max (L.) Merr.), caused by Phytophthora sojae M. J. Kauffmann & J. W. Gerdemann, has been isolated throughout the soybean-producing regions of the United States. Posted 3 June 2000.


Plant Disease ◽  
2011 ◽  
Vol 95 (10) ◽  
pp. 1316-1316 ◽  
Author(s):  
M. M. Díaz Arias ◽  
G. P. Munkvold ◽  
L. F. Leandro

Fusarium spp. are widespread soilborne pathogens that cause important soybean diseases such as damping-off, root rot, Fusarium wilt, and sudden death syndrome. At least 12 species of Fusarium, including F. proliferatum, have been associated with soybean roots, but their relative aggressiveness as root rot pathogens is not known and pathogenicity has not been established for all reported species (2). In collaboration with 12 Iowa State University extension specialists, soybean roots were arbitrarily sampled from three fields in each of 98 Iowa counties from 2007 to 2009. Ten plants were collected from each field at V2-V3 and R3-R4 growth stages (2). Typical symptoms of Fusarium root rot (2) were observed. Symptomatic and asymptomatic root pieces were superficially sterilized in 0.5% NaOCl for 2 min, rinsed three times in sterile distilled water, and placed onto a Fusarium selective medium. Fusarium colonies were transferred to carnation leaf agar (CLA) and potato dextrose agar and later identified to species based on cultural and morphological characteristics. Of 1,230 Fusarium isolates identified, 50 were recognized as F. proliferatum based on morphological characteristics (3). F. proliferatum isolates produced abundant, aerial, white mycelium and a violet-to-dark purple pigmentation characteristic of Fusarium section Liseola. On CLA, microconidia were abundant, single celled, oval, and in chains on monophialides and polyphialides (3). Species identity was confirmed for two isolates by sequencing of the elongation factor (EF1-α) gene using the ef1 and ef2 primers (1). Identities of the resulting sequences (~680 bp) were confirmed by BLAST analysis and the FUSARIUM-ID database. Analysis resulted in a 99% match for five accessions of F. proliferatum (e.g., FD01389 and FD01858). To complete Koch's postulates, four F. proliferatum isolates were tested for pathogenicity on soybean in a greenhouse. Soybean seeds of cv. AG2306 were planted in cones (150 ml) in autoclaved soil infested with each isolate; Fusarium inoculum was applied by mixing an infested cornmeal/sand mix with soil prior to planting (4). Noninoculated control plants were grown in autoclaved soil amended with a sterile cornmeal/sand mix. Soil temperature was maintained at 18 ± 1°C by placing cones in water baths. The experiment was a completely randomized design with five replicates (single plant in a cone) per isolate and was repeated three times. Root rot severity (visually scored on a percentage scale), shoot dry weight, and root dry weight were assessed at the V3 soybean growth stage. All F. proliferatum isolates tested were pathogenic. Plants inoculated with these isolates were significantly different from the control plants in root rot severity (P = 0.001) and shoot (P = 0.023) and root (P = 0.013) dry weight. Infected plants showed dark brown lesions in the root system as well as decay of the entire taproot. F. proliferatum was reisolated from symptomatic root tissue of infected plants but not from similar tissues of control plants. To our knowledge, this is the first report of F. proliferatum causing root rot on soybean in the United States. References: (1) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (2) G. L. Hartman et al. Compendium of Soybean Diseases. 4th ed. The American Phytopathologic Society, St. Paul, MN, 1999. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, UK, 2006. (4) G. P. Munkvold and J. K. O'Mara. Plant Dis. 86:143, 2002.


Plant Disease ◽  
2018 ◽  
Vol 102 (1) ◽  
pp. 114-123 ◽  
Author(s):  
A. Lebreton ◽  
C. Labbé ◽  
M. De Ronne ◽  
A. G. Xue ◽  
G. Marchand ◽  
...  

Phytophthora root rot, caused by Phytophthora sojae, is one of the most damaging diseases of soybean and the introgression of Rps (Resistance to P. sojae) genes into elite soybean lines is arguably the best way to manage this disease. Current bioassays to phenotype the gene-for-gene relationship are hampered with respect to reproducibility and long-term stability of isolates, and do not accurately predict horizontal resistance individually. The aim of our study was to investigate a new way of phenotyping P. sojae isolates and vertical and horizontal resistance in soybean that relies on zoospores inoculated directly into a hydroponic system. Inoculation of P. sojae isolates against a set of eight differentials accurately and reproducibly identified pathotypes over a period of two years. When applied to test vertical resistance of soybean lines with known and unknown Rps genes, the bioassay relied on plant dry weight to correctly identify all genes. In addition, simultaneous inoculations of three P. sojae isolates, collectively carrying eight major virulence factors against 64 soybean lines with known and unknown levels of horizontal resistance, separated the plants into five distinct groups of root rot, allowing the discrimination of lines with various degrees of partial resistance. Based on those results, this bioassay offers several advantages in facilitating efforts in breeding soybean for P. sojae resistance and in identifying virulence factors in P. sojae.


1991 ◽  
Vol 71 (1) ◽  
pp. 175-176
Author(s):  
G. R. Ablett ◽  
W. D. Beversdorf

RCAT Persian is a mid-late Maturity Group I soybean [Glycine max L. (Merr.)] cultivar with excellent yield potential, good lodging tolerance and resistance to most races of phytophthora root rot caused by Phytophthora megasperma f. sp. glycinea (Pmg) found in Ontario. Key words: Soybean, cultivar description


1997 ◽  
Vol 77 (2) ◽  
pp. 257-258 ◽  
Author(s):  
H. D. Voldeng ◽  
R. J. D. Guillemette ◽  
D. A. Leonard ◽  
E. R. Cober

AC Hercule is a 2600 crop heat unit soybean (Glycine max [L.] Merr.) cultivar with seed protein levels about 3–4% higher than oilseed cultivars. AC Hercule is intended for whole-seed use in livestock rations. AC Hercule has field tolerance to phytophthora root rot. Key words: Soybean, cultivar description, high protein cultivar


Plant Disease ◽  
2000 ◽  
Vol 84 (5) ◽  
pp. 593-593 ◽  
Author(s):  
G. S. Karaoglanidis ◽  
D. A. Karadimos ◽  
K. Klonari

A severe rot of sugar beet roots was observed in the Amyndeon area of Greece during summer 1998. Infected plants initially showed a temporary wilt, which became permanent, and finally died. Slightly diseased roots showed necrotic spots toward the base, whereas more heavily diseased roots showed a more extensive wet rot that extended upward. Feeder roots also were infected and reduced in number because of decay. Rotted tissue was brown with a distinguishing black margin. In most of the isolations, carried out on potato dextrose agar (PDA), the pathogen obtained was identified as Phytophthora cryptogea Pethybr. & Lafferty Mycelium consisted of fairly uniform, fine hyphae that showed a slightly floral growth pattern. In autoclaved soil-extract medium, chains or clusters of hyphal swellings (average 12 µm diameter) formed. Sporangia were not produced on solid media but were abundant in soil-extract medium. Sporangia were oval to obpyriform in shape, nonpapillate with rounded bases, and varied in size (39 to 80 × 24 to 40 µm). Oospores were plerotic, thick-walled, and averaged 25 µm in diameter. The isolated pathogen, cultured on PDA, could not grow at all at 36°C. The closely related species P. drechsleri Tucker has been reported to cause similar root rot symptoms on sugar beet (3). However, P. drechsleri grows well at 36°C, while P. cryptogea cannot grow at this temperature; this is the major distinguishing feature that separates the two species (1). To test the pathogenicity of the organism, surface-sterilized sugar beet roots (cv. Rizor) were inoculated with 5-mm-diameter PDA plugs containing actively growing mycelium. Sterile PDA plugs were used to inoculate control sugar beet roots. Inoculated roots were kept at 27°C in the dark for 10 days. Extensive decay of inoculated roots developed, similar to decay observed in the field, whereas control roots showed no decay. P. cryptogea was reisolated from rotted tissues. This pathogen has been recognized previously as a cause of root rot of sugar beet in Japan (1) and Wyoming (2). This is the first report of Phytophthora root rot of sugar beet in Greece. References: (1) D. C. Erwin and O. K. Ribeiro. 1996. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN. (2) P. C. Vincelli et. al. Plant Dis. 74:614, 1990. (3) E. D. Whitnew and J. E. Duffus, eds. 1986. Compendium of Beet Diseases and Insects. The American Phytopathological Society, St. Paul, MN.


2018 ◽  
Vol 31 (6) ◽  
pp. 614-622 ◽  
Author(s):  
Javier F. Tabima ◽  
Michael D. Coffey ◽  
Inga A. Zazada ◽  
Niklaus J. Grünwald

Population genetics is a powerful tool to understand patterns and evolutionary processes that are involved in plant-pathogen emergence and adaptation to agricultural ecosystems. We are interested in studying the population dynamics of Phytophthora rubi, the causal agent of Phytophthora root rot in raspberry. P. rubi is found in the western United States, where most of the fresh and processed raspberries are produced. We used genotyping-by-sequencing to characterize genetic diversity in populations of P. rubi sampled in the United States and other countries. Our results confirm that P. rubi is a monophyletic species with complete lineage sorting from its sister taxon P. fragariae. Overall, populations of P. rubi show low genetic diversity across the western United States. Demographic analyses suggest that populations of P. rubi from the western United States are the source of pathogen migration to Europe. We found no evidence for population differentiation at a global or regional (western United States) level. Finally, our results provide evidence of migration from California and Oregon into Washington. This report provides new insights into the evolution and structure of global and western United States populations of the raspberry pathogen P. rubi, indicating that human activity might be involved in moving the pathogen among regions and fields.


2017 ◽  
Vol 68 (6) ◽  
pp. 555
Author(s):  
Yinping Li ◽  
Suli Sun ◽  
Chao Zhong ◽  
Zhendong Zhu

Phytophthora root rot (PRR) caused by Phytophthora sojae, is one of the most destructive soybean diseases. The deployment of resistant cultivars is an important disease management strategy. To this aim, the development of a fast and effective method to evaluate soybean resistance to P. sojae is strategic. In this study, a detached-petiole inoculation technique was developed and its reliability was verified in soybean cultivars and segregant populations for PRR resistance. The detached-petiole and hypocotyl inoculation methods were used to assess the resistance of soybean cultivars, the F2 population of a Zhonghuang47 × Xiu94-11 cross, and the derived F2:3 population. The reactions of 13 analysed cultivars to three P. sojae isolates were consistent between the two inoculation techniques. The reactions of the F2 and F2:3 populations to isolate PsMC1 were 95.20% similar between the two inoculation methods. The segregation of the resistance and susceptibility fit a 3 : 1 ratio. Our results suggest that the detached-petiole technique is a reliable method, and reveal that the PRR resistance in Xiu94-11 is controlled by a single dominant gene. The phenotypic ratios of the tested Jikedou2 × Qichadou1 F2 population using the detached-petiole inoculation technique fit a 3 : 1 ratio (Resistance : Susceptibility). This demonstrated that Qichadou1 contains a single dominant gene conferring resistance to P. sojae. Our new detached-petiole inoculation technique is effective, reliable, non-destructive to the plant, and does not require an excessive amount of seeds. It may be suitable for the largescale screening of soybean resistance to multiple P. sojae isolates.


2019 ◽  
Vol 20 (2) ◽  
pp. 88-93 ◽  
Author(s):  
Hui Yan ◽  
Berlin Nelson

Phytophthora root rot, caused by Phytophthora sojae, is a major disease of soybean in North Dakota, especially in the Red River Valley (RRV). Planting resistant cultivars is the primary management. The resistance genes Rps 1c, 1k, 3a, and 6 are the most common genes deployed in this region. To determine the efficacy of these genes and document the pathotype changes in the population of P. sojae over several decades, a survey of pathotypes was conducted in 2015 in three counties in the southern RRV and compared with similar surveys conducted in 1991 to 1994 and 2002 to 2004 in the same area. The results showed that from 1991 to 1994 when 6% of the pathotypes could defeat the Rps1c gene, by 2004 it was 57% of the pathotypes, and that percentage remained the same in 2015. However, in 1994 no pathotype could defeat Rps 1k, but by 2004 it was 12% and in 2015 it was 41%. Pathotypes that defeat Rps 3a and 6 have been few over the years. Pathotypes that defeat both 1c and 1k increased from none to 31% between 1994 and 2015. With the increasing complexity of P. sojae pathotypes, new strategies for managing this pathogen in the future will be needed.


Sign in / Sign up

Export Citation Format

Share Document