scholarly journals Occurrence of a Reovirus Infecting Maize in India

Plant Disease ◽  
2001 ◽  
Vol 85 (1) ◽  
pp. 99-99
Author(s):  
S. L. Lenardon ◽  
F. Giolitti ◽  
H. G. Welz ◽  
P. Verma

During the 1998-99 season, maize plants showing viruslike symptoms were observed at two locations in the Andhra Pradesh state in Southern India. Several hybrids were evaluated at Hyderabad in a replicated yield trial and most were affected, with disease incidence ranging from 4.4 to 61.8% of the plants among plots. Hybrid 4642 (Proagro 3-way hybrid, late maturity) and the pre-commercial hybrid YLY102 were the most susceptible, whereas the popular hybrid 4640 was among the least susceptible entries. In seed production fields near Eluru, incidence ranged from 10 to 15% among plots, with the female parent of hybrid 4210 (Proagro 3-way hybrid, early maturity) being especially affected. Symptoms observed in hybrids varied, presumably, according to the infection time and included severe plant dwarfing, dark-green leaves, enations on the lower leaf surface, and small malformed ears with few or no kernels. Symptomatic and asymptomatic field plants (root and leaf tissues) were tested by ds-RNA polyacrylamide gel electrophoresis and by double-antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA) with antiserum to Mal de río cuarto virus (MRCV), a Reoviridae-Fijivirus member. MRCV and Maize rough dwarf virus (MRDV) were selected as controls because the symptoms were similar to those caused by these maize viruses (1,2). ds-RNA gels from symptomatic plants showed 10 bands with banding patterns different from those of MRCV or MRDV. DAS-ELISA indicated a distant relationship to MRCV. These results provide evidence of a reovirus infection to maize hybrids in India and suggest that a virus belonging to the family Reoviridae, genus Fijivirus is causing this new disease. The high disease incidence and the severity of symptoms should alert breeders and pathologists in southern Asia about potential yield losses. References: (1) G. Boccardo and R. G. Milne. 1984. Descriptions of Plant Viruses 294. Inst. Hortic. Res., Wellesbourne. (2) C. Marzachi et al. J. Plant Dis. Prot. 106:431–436, 1999.

Plant Disease ◽  
2001 ◽  
Vol 85 (7) ◽  
pp. 801-801 ◽  
Author(s):  
R. Nono-Womdim ◽  
I. S. Swai ◽  
M. L. Chadha ◽  
K. Gebre-Selassie ◽  
G. Marchoux

African eggplant, or garden egg (Solanum aethiopicum) is an important vegetable in most sub-Saharan African countries. Since June 1997, viral symptoms, including mosaic, vein clearing, and stunting, have been observed on several crops of African eggplant cv. Tengeru White at a number of sites in the Arusha region of northern Tanzania. Field inspections revealed disease incidence ranging from 50 to 90%. During the same period, high populations of the green peach aphid Myzus persicae were observed in affected crops of African eggplant. These aphids were also found to reproduce in African eggplants. Flexuous, rodshaped virus-like particles, approximately 750 nm long and 12 nm wide, were found in electron microscope leaf dips from field samples of naturally affected African eggplants. The particle size suggested a species of Potyviridae. Thus, 20 field-infected samples of S. aethiopicum (randomly collected from four farms) were assayed in double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for the presence of Potato virus Y (PVY) and Pepper veinal mottle virus (PVMV), known to infect tomato and other solanaceous crops in the region (2). However, all samples gave negative results. Further DAS-ELISA were performed with the same extracts from naturally infected plants of S. aethiopicum with antisera directed against Tobacco etch virus, Tobacco vein mottling virus, Pepper mottle virus, and Chilli veinal mottle virus (ChiVMV). All 20 samples were positive only for ChiVMV. ChiVMV, a single-stranded RNA virus transmitted in a nonpersistent manner by several aphid species, is one of the most important viruses of pepper in Asia (1). To confirm DAS-ELISA results, an isolate of ChiVMV from African eggplant was transmitted by mechanical inoculations, resulting in disease on tobacco (Nicotiana tobacco cv. Xanthi nc), pepper (Capsicum annuum cv. Yolo Wonder), tomato (Lycopersicon esculentum cv. Tengeru 97), and African eggplant (S. aethiopicum cv. Tengeru White). Extracts from the inoculated plants tested positive for the presence of ChiVMV in DAS-ELISA. This mechanically transmitted isolate did not infect melon (Cucumis melo), cucumber (C. sativus), or cowpea (Vigna unguiculata), which are nonhosts of ChiVMV. To our knowledge, this is the first report of the natural occurrence of ChiVMV in African eggplant. References: (1) S. K. Green et al. PETRIA 9:332, 1999. (2) R. Nono-Womdim et al. J. S. Afr. Soc. Hort. Sci. 6:41–44, 1996.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1162-1162 ◽  
Author(s):  
E. Segundo ◽  
F. M. Gil-Salas ◽  
D. Janssen ◽  
G. Martin ◽  
I. M. Cuadrado ◽  
...  

Common bean (Phaseolus vulgaris L.) is grown on approximately 1,500 ha in commercial greenhouses and is of major economic importance in the Souss-Massa Region, Agadir, Morocco. Since October 2003, symptoms resembling a viral disease, consisting of pod mosaic and distortion and mild to severe mosaic in leaves, have been observed on bean plants in several greenhouses. Mechanical inoculation with symptomatic leaf extracts produced necrotic local lesions on P. vulgaris ‘Pinto’ and systemic symptoms similar to those observed in the naturally infected bean plants P. vulgaris ‘Donna’ (five plants per cultivar). Inoculated and naturally infected samples reacted positively using a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to Southern bean mosaic virus (SBMV) (DSMZ, Braunschweig, Germany), a member of the Sobemovirus genus that is transmitted by contact, soil, beetles, and seeds (1). Virions purified from a naturally infected ‘Donna’ plant contained a 30-kDa polypeptide that reacted positively using sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blot analysis with SBMV antiserum (DSMZ). Reverse transcription-polymerase chain reaction amplification with SMBV primers as described by Verhoeven et al. (2) produced an expected 870-bp band. The amplicon was cloned, sequenced (GenBank Accession No. AJ748276), and compared to those isolates available in GenBank and had a nucleotide sequence identity of 87% and a derived amino acid sequence identity of 95% with an SBMV isolate from Spain (2). During a survey in different areas of the Souss-Massa Region, 20 symptomatic leaf and pod samples were randomly collected from 12 greenhouses (50 ha) where significant commercial losses were suffered because of this virus disease, and all samples were positive using DAS-ELISA for SBMV. To our knowledge, this is the first report of SBMV in Morocco. References: (1) J. H. Tremaine and R. I. Hamilton. Southern bean mosaic virus. No. 274 in: Descriptions of Plant Viruses. CMI/AAB, Kew, Surrey, England, 1983. (2) J. Th. J. Verhoeven et al. Eur. J. Plant Pathol. 109:935, 2003.


Plant Disease ◽  
1998 ◽  
Vol 82 (2) ◽  
pp. 149-152 ◽  
Author(s):  
P. E. Rodriguez Pardina ◽  
M. P. Giménez Pecci ◽  
I. G. Laguna ◽  
E. Dagoberto ◽  
G. Truol

The fijivirus known as “Mal de Río Cuarto” that affects corn is endemic to the area of Río Cuarto, Cordoba Province, Argentina. One of the preferred species for the development of its vector, the insect Delphacodes kuscheli Fennah, is wheat. In this area, wheat plants with deformed leaves, spikes and spikelets, shortened internodes, leaves with serrated borders, and sterile spikelets were detected, suggesting the possibility that Mal de Río Cuarto Virus could also be infecting this crop. Samples originating in Río Cuarto, Sampacho, and La Carlota (Córdoba Province) that showed symptoms, were analyzed by double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), polyacrylamide gel electrophoresis, and electron microscopy, confirming, for the first time, the occurrence of the disease in wheat. The frequency of the disease was assessed in random samples from 14 wheat plots located in the Department of Río Cuarto (Córdoba Province). The samples were analyzed using the DASELISA immunoenzymatic technique, and the disease was detected in the majority of the fields assessed, with levels of incidence that ranged between 2.5 and 24%. We must be aware of the presence of this virus in the wheat crop, where it appears to play a double role in the epidemiology of the disease, acting both as a virus reservoir and as a preferred host for the development of populations of the vector virus, D. kuscheli.


HortScience ◽  
2013 ◽  
Vol 48 (1) ◽  
pp. 37-39 ◽  
Author(s):  
Michael G. Bausher

Reciprocal grafts of two tomato (Solanum lycopersicum L.) cultivars were made by hand using commercial grafting techniques. The razor blade used to cut the rootstock or scion was first contaminated by making a single cut on tomato plants infected with either Tomato spotted wilt virus (TSWV) or Tomato mosaic virus (ToMV). Although no transmission of TSWV was observed in these experiments, ToMV was spread plant to plant through razor blade exposure to this virus. The presence of this virus was confirmed by double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) at 21 days post-inoculation. The highest rate of infection was 25% of the inoculated plants. The greatest number of positive virus assays was found in the first 10 plants of each experiment. These areas contained 84% of the DAS-ELISA-positive plants. Gaps of up to 10 plants occurred during serial inoculation before infection resumed. Random dispersion occurred in two experiments. Similar results were observed whether the contaminated implement was used to cut the rootstock or the scion before graft assembly. This work demonstrates that some viruses from a single contamination can be moved in a serial manner during the grafting process, especially with varieties with minimal or no resistance to viral plant pathogens. Also, visual diagnosis cannot always be relied on as a means of eliminating virus-infected plants, especially when higher greenhouse and annealing temperatures are maintained.


Plant Disease ◽  
2020 ◽  
Author(s):  
Tiago Silva Jorge ◽  
Mirtes Freitas Lima ◽  
Leonardo Silva Boiteux ◽  
Maria Esther N. Fonseca ◽  
Elliot W. Kitajima

Endive (Cichorium endivia L.) is a very important cash crop for small farmers in Brazil. During inspections conducted in the summer season of 2019–2020, leaf samples of C. endivia ‘La Spezia’ seedlings exhibiting typical symptoms of orthotospoviruses infection (viz. concentric chlorotic spots and apical leaf deformation; ≈ 10%) were collected in commercial greenhouses in Brasília–DF, Central Brazil. Leaves of one healthy and three symptomatic plants were initially evaluated via double antibody sandwich enzyme-linked immunosorbent assay (DAS–ELISA) with polyclonal antibodies (produced at CNPH) raised against the nucleoprotein of the three major orthotospoviruses: tomato spotted wilt orthotospovirus (TSWV), groundnut ringspot orthotospovirus (GRSV) and tomato chlorotic spot orthotospovirus (TCSV). Strong serological reactions were observed only against GRSV antibodies exclusively in extracts from symptomatic samples. In order to confirm the causal agent of those symptoms, total RNA was extracted (Trizol®; Sigma) from infected leaf samples and used in a two-step reverse transcriptase polymerase chain reaction (RT–PCR) approach. Synthesis of the cDNA was carried out with the J13 primer (5’–CCC GGA TCC AGA GCA AT–3’) (Cortez et al., 2001) followed by PCR assays with the primer pair BR60 (5’–AGA GCA ATC GTG TCA–3`) and BR65 (5’–ATC AAG CCT TCT GAA AGT CAT–3’) (Eiras et al., 2001). This primer set amplifies a fragment of 453 bp including the untranslated region at the 3’ terminus of the small RNA and the protein N–coding gene of at least five orthotospoviruses: TSWV, GRSV, TCSV, chrysanthemum stem necrosis orthotospovirus (CSNV) and zucchini lethal chlorosis orthotospovirus (ZLCV) (Eiras et al., 2001). The obtained amplicons (≈ 432 bp) were subsequently subjected to Sanger dideoxy nucleotide sequencing at CNPH. BLASTn analysis showed >99% identity with a wide array of GRSV isolates available in the GenBank. The nucleotide sequence of Tospo #1 (MT215222) and Tospo #3 (MT215224) isolates displayed 100% identity between them, whereas the Tospo #2 (MT215223) isolate displayed one non–synonymous point mutation in the 3’ untranslated region in comparison with the former two isolates. Three plants of C. endivia, Capsicum annuum L. cv. Ikeda, tomato (Solanum lycopersicum L.) cv. Santa Clara and its isoline ‘LAM–147’ (with the Sw–5 resistance gene), Nicotiana rustica L., Lactuca sativa L. (‘Vanda’ and ‘PI-342444’) and Gomphrena globosa L. were mechanically inoculated individually with each GRSV isolate in order to confirm their pathogenicity. Chlorotic lesions and mosaic were observed seven days after inoculation of all plant materials, except the tomato inbred line ‘LAM–147’, which has the Sw-5 gene that confers broad–spectrum resistance to all Brazilian orthotospoviruses (Boiteux and Giordano, 1993). The GRSV infection was confirmed via DAS–ELISA and RT–PCR 15 days after inoculation, using the same set of antibodies and the primer pair BR60 / BR65. Transmission electron microscopy of ultrathin sections from symptomatic leaf tissues, both from field–infected and experimentally inoculated endive revealed the presence of typical orthotospovirus particles, within endoplasmic reticulum cisternae. Natural infection of endive by TSWV has been reported in Greece (Chatzivassiliou et al., 2000) and by TCSV in São Paulo State, Brazil and in Florida, USA (Subramanya Sastry et al., 2019). To our knowledge, it is the first report of GRSV naturally infecting this Asteraceae species in Brazil. Confirmation of GRSV infection of C. endivia plants is a relevant piece of information aiming to design effective disease management strategies. References: Boiteux, L.S. and Giordano, L. B. 1993. Euphytica 71: 151. Eiras, M. et al. 2001. Fitopatol. Bras. 26: 170. Chatzivassiliou, E.K. et al. 2000 Ann. Appl. Biol. 137: 127. Cortez, I., et al. 2001. Arch. Virol. 146: 265. Subramanya Sastry, K., et al. 2019. Encyclopedia of plant viruses and viroids. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3912-3.


2021 ◽  
Vol 8 (03) ◽  
pp. 177-186
Author(s):  
Gilima ZaharaddeenSamaila ◽  
David Kashina Boniface ◽  
Olalekan Oyeleke Banwo ◽  
Alegbejo Mathew Dada ◽  
Charles Chindo Agart ◽  
...  

One of the major constraints to production of okra (Abelmoschus esculentus L.) in Nigeria and in particular in Kaduna and Zamfara States, is the problem of okra mosaic virus and okra leaf curl virus. This study was carried out to provide information on the occurrence and distribution of okra mosaic and okra leaf curl viruses on okra, in Kaduna and Zamfara states, Nigeria. A survey of okra-producing farms was carried out during dry and wet seasons of 2017 cropping season in Kaduna (Zaria, Lere, and Igabi Local Government Areas) and Zamfara (Gusau, Bungudu, and Zurmi LGAs) states. Leaf samples (15) of symptomatic okra plants were collected from each farm in the study area. The total number of plants and the number of symptomatic plants within each subplot were recorded, and the disease incidence was determined. Double Antibody Sandwich Enzyme-Linked Immunosorbent Assay (DAS- ELISA) kit was used in the detection of Okra Mosaic Virus while Polymerase Chain Reaction (PCR) was employed for the detection Okra Leaf Curl Virus. The results showed that all the okra leaf samples tested for OLCV were negative in this study while OkMV was tested positve in all the samples with a recorded incidence of  20 % and 14 %  in Kaduna and Zamfara states respectively, however, only 8 out of total weed samples were also tested positive for OKV, but all were tested negative to OLCV.


Plant Disease ◽  
2005 ◽  
Vol 89 (8) ◽  
pp. 914-914 ◽  
Author(s):  
T. Ghotbi ◽  
K. Bananej

Banana bunchy top virus (BBTV), Banana streak virus (BSV), and Cucumber mosaic virus (CMV) (genus Cucumovirus, family Bromoviridae [2]) cause widespread economic losses on banana (Musa sp.) throughout the world and have been reported on banana in different countries including Pakistan along its southeastern border with Iran (1). A survey was conducted from 2004–2005 to identify viruses infecting banana in greenhouses in different growing areas in northern Iran, Mazandaran Province (Sari, Babol, Behshahr, and Ghaemshahr cities). A total of 180 samples from seven banana-growing greenhouses with symptoms of mosaic, chlorosis, stunting, and fruit malformation were collected. All samples were tested for CMV with polyclonal antibodies using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) (CMV strain D subgroup I; gifted by H. Lecoq, INRA, Avignion, France). For sap inoculation onto indicator test plants, selected ELISA-positive leaf samples were ground in chilled 0.01 M phosphate buffer, pH 7.0, containing 0.15% 2-mercaptoethanol. Chlorotic and necrotic local lesions developed on Chenopodium amaranticolor and Vigna unguiculata (cv. Mashad local) 10 and 12 days postinoculation, respectively. Cucumis sativus and Nicotiana rustica also developed systemic mosaic symptoms (3). All indicator test plants were rechecked for the presence of CMV using DAS-ELISA. On the basis of serological tests and indicator host plants reactions, CMV was identified in 32% of samples including Sari (13.8%), Babol (2.7%), Behshahr (10%) and Ghahemshahr (5%), respectively. Fifty-five samples did not react with CMV antiserum but the presence of symptoms resembling BBTV and BSV (4) emphasizes the need for further investigations to confirm the presence and identities of other viruses. References: (1) J. Bird and F. L. Wellman. Phytopathology 52:286, 1962. (2) S. K. Choi et al. J. Virol. Methods 83:67, 1999. (3) A. J. Gibbs and B. D. Harrison. Descriptions of Plant Viruses. No.1. CMI/AAB, Surrey, England, 1970. (4) R. C. Ploetz et al., eds. Compendium of Tropical Fruit Diseases. The American Phytopathological Society, St. Paul, MN, 1994.


Plant Disease ◽  
2000 ◽  
Vol 84 (8) ◽  
pp. 921-921 ◽  
Author(s):  
R. G. Kapooria ◽  
J. Ndunguru ◽  
G. R. G Clover

During 1997 and 1998, virus symptoms similar to those of Soilborne wheat mosaic virus (SBWMV) and Wheat spindle streak mosaic virus (WSSMV) were observed on nine wheat cultivars (Triticum aestivum cvs. Deka, Gamtoos, Lorie II, MM2, Nata, Nkwazi, P7, Scepter, and Scan) in the Central, Copper-Belt, Lusaka, and Southern provinces of Zambia. Symptoms were observed between June and August on wheat, which in Zambia is an irrigated crop grown during the cooler months (May to August). In fields suspected to be infected with SBWMV, irregularly distributed, circular patches of severely stunted sparse plants were observed. Because of these symptoms, the syndrome is described in Zambia as the “crater disease.” Infection was more common on light to medium sandy-loam clay soils, and affected patches were particularly common along the field edges and in poorly drained areas. Such waterlogged conditions are conducive to the multiplication and spread of Polymyxa graminis, the protist vector of SBWMV (1). Affected plants initially showed chlorotic streaks on all leaves, which became uniformly yellow and eventually necrotic. The roots of these plants were slightly swollen and enlarged and are likened to “Rastafarian pleats” locally. In fields suspected to be infected with WSSMV, symptomatic plants were observed in the border rows of affected fields. Chlorotic streaks and mosaics were observed on the leaves of affected plants, and the tips of these leaves were also frequently twisted. Using double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), SBWMV and WSSMV were positively identified in symptomatic plants. In total, 81 plants from the four provinces were tested, and 72 and 37% were infected with SBWMV and WSSMV, respectively. Identification was confirmed by DAS-ELISA using antisera from W. Huth (BBA-Braunschweig, Germany) and C. Rubies-Autonell (Bologna University, Italy) for SBWMV and using antisera from W. Huth (BBA-Braunschweig, Germany) and G. Bergstrom (Cornell University, New York) for WSSMV. Further confirmation of the identity of the two viruses was provided by the reaction of 12 indicator species (Chenopodium amaranticolor, C. quinoa, C. hybridum, Digitaria milanjiana, Eleusine indica, Oryza sativa (cv. IITA 212), Panicum maximum, Rottboellia cochinchinensis, Setaria verticillata, Sorghum bicolor(cv. Sima), S. halepense, and Triticum aestivum (cvs. Lucal, Kwale, Lorie II, Nkanga, 128, and GV 4–12) in mechanical transmission studies using infected leaf sap. This is the first report of SBWMV and WSSMV not only in Zambia but also Africa. The area of wheat grown in Zambia has risen in the past several years to approximately 18,000 ha per annum. However, annual wheat yield (60,000 tons) has not risen to match this increase. The effect of SBWMV and WSSMV on yield in Zambia has not yet been measured, but both viruses cause serious losses in other countries (1–3) and the severity of the symptoms suggests that significant yield reductions are likely. Furthermore, no Zambian wheat cultivars are known to be resistant to either virus. Generally, wheat production fails to meet demand in the country and therefore further yield losses due to virus infection could be disastrous. References: (1) M. K. Brakke. CMI/AAB Desc. of Plant Viruses 77, 1971. (2) J. T. Slykhuis. Phytopathology 60:319, 1970. (3) V. Vallega and C. Rubies-Autonell. Plant Dis. 69:64, 1985.


Author(s):  
Rami Obeid ◽  
Elias Wehbe ◽  
Mohamad Rima ◽  
Mohammad Kabara ◽  
Romeo Al Bersaoui ◽  
...  

Background: Tobacco mosaic virus (TMV) is the most known virus in the plant mosaic virus family and is able to infect a wide range of crops, in particularly tobacco, causing a production loss. Objectives: Herein, and for the first time in Lebanon, we investigated the presence of TMV infection in crops by analyzing 88 samples of tobacco, tomato, cucumber and pepper collected from different regions in North Lebanon. Methods: Double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), revealed a potential TMV infection of four tobacco samples out of 88 crops samples collected. However, no tomato, cucumber and pepper samples were infected. The TMV+ tobacco samples were then extensively analyzed by RT-PCR to detect viral RNA using different primers covering all the viral genome. Results and Discussion: PCR results confirmed those of DAS-ELISA showing TMV infection of four tobacco samples collected from three crop fields of North Lebanon. In only one of four TMV+ samples, we were able to amplify almost all the regions of viral genome, suggesting possible mutations in the virus genome or an infection with a new, not yet identified, TMV strain. Conclusion: Our study is the first in Lebanon revealing TMV infection in crop fields, and highlighting the danger that may affect the future of agriculture.


Author(s):  
Willard Mbewe ◽  
Andrew Mtonga ◽  
Margret Chiipanthenga ◽  
Kennedy Masamba ◽  
Gloria Chitedze ◽  
...  

AbstractA survey was carried out in 19 districts to investigate the prevalence and distribution of sweetpotato virus disease (SPVD) and its implication on the sustainability of clean seed system in Malawi. A total of 166 leaf samples were collected and tested for the presence of 8 viruses using nitrocellulose membrane enzyme-linked immunosorbent assay (NCM-ELISA). SPVD foliar symptoms were observed in 68.42% of the surveyed districts. There were significant variations in disease incidence and severity (p < 0.001) among districts, with the highest incidence in Mulanje (28.34%). Average SPVD severity score was 3.05. NCM-ELISA detected sweet potato feathery mottle virus (SPFMV, 30.54%), sweet potato mild mottle virus (SPMMV, 31.14%), sweet potato mild speckling virus (SPMSV, 16.17%), sweet potato C-6 virus (SPC6V, 13.77%), sweet potato chlorotic stunt virus (SPCSV, 22.16%), sweet potato collusive virus (SPCV, 30.54%), sweet potato virus G (SPVG, 11.38%), cucumber mosaic virus (CMV, 7.78%) either in single or mixed infections. Data from this study indicate a significant SPVD occurrence in the country, and the consequence implications towards national sweetpotato seed system.


Sign in / Sign up

Export Citation Format

Share Document