scholarly journals First Report of Colletotrichum acutatum in Blueberry Plants in Spain

Plant Disease ◽  
2001 ◽  
Vol 85 (12) ◽  
pp. 1285-1285 ◽  
Author(s):  
C. Barrau ◽  
B. de los Santos ◽  
F. Romero

An anthracnose disease was observed affecting leaves of high-bush blueberry plants (Vaccinium corymbosum L. ‘Sharpblue’) in small areas within two production fields in Huelva Province of Andalucía, in southwestern Spain. The first symptoms observed in late spring were circular, necrotic lesions, red to salmon in color, and ranging from 3 to 20 mm in diameter. Later, lesions became salmon colored in the center with a brilliant red halo. Fungal isolations were made from the lesions. Infected tissues were surface-disinfected in 1% sodium hypochlorite for 1 min, blotted dry on sterile filter paper, and plated on 2% water agar. The plates were incubated at 25°C for 5 to 10 days. Fungal colonies isolated from the tissues were transferred to potato dextrose yeast agar (PDYA). Only one fungal species was consistently isolated from affected leaf tissues and was identified as Colletotrichum acutatum J.H. Simmonds based on morphological characteristics (2) and enzyme-linked immunosorbent assay (1). Colonies of the fungus on PDYA showed a white-to-gray dense mycelium covered with salmon-colored spore masses. The reverse of the plates was a pink-salmon color. Colony diameter on PDYA averaged 50 mm after 7 days at 25°C. Conidia were hyaline, aseptate, fusiform to cylindrical, and 12.5 × 3.2 μm. Inoculation of leaves and fruits of blueberry cv. Misty with a conidial suspension (106 conidia per ml) of C. acutatum produced lesions on the leaves and fruits similar to those observed on diseased plants in the field. The pathogen was isolated from lesions on inoculated plants. To our knowledge, this is the first report of C. acutatum in high-bush blueberry plants in Spain. References: (1) T. A. Cooke et al. EPPO Bull. 25:57, 1995. (2) B. C. Sutton. The Coelomycetes. CMI, Kew, England, 1980.

Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1158-1158 ◽  
Author(s):  
Y. H. Liu ◽  
T. Lin ◽  
C. S. Ye ◽  
C. Q. Zhang

Blueberry (Vaccinium corymbosum) production is developing quickly in China with about 20,000 ha presently cultivated. In 2010 in Lin'an, Zhejiang Province, plants developed an apparently new disease of blueberry (cv. Duke) with symptoms consisting of wilting of foliage, stunting of plants, and reduced fruit yields. Internal vascular and cortical tissues of plant crowns showed a brown to orange discoloration. Approximately 3% of the plants in the commercial plantings were affected and eventually died after 50 to 60 days. Infected plant samples (stems and roots) collected from different fields were surface sterilized with 1.5% sodium hypochlorite for 2 min, rinsed in water, plated on 2% potato dextrose agar (PDA), and incubated at 25°C in the dark for 1 week. Single conidium cultures were consistently isolated and cultured on acidified PDA (APDA) for morphological characterization (1,2). Colonies were light with purple mycelia, and beige or orange reverse colony colors developed after 7 days incubation at 25°C. Colonies producing abundant microconidia and macroconidia. Microconidia were hyaline and oval-ellipsoid to cylindrical (3.9 to 9.6 × 1.1 to 3.4 μm). Macroconidia were 3 to 5 septate and fusoid-subulate with a pedicellate base (28.6 to 37.5 × 3.3 to 4.2 μm). Morphology and development of macroconidia and microconida were consistent with a description of Fusarium oxysporum Schltdl (1,2). The ribosomal internal transcribed spacers ITS1 and ITS2 of eight isolates were amplified using primers ITS1/ITS4 on DNA extracted from mycelium and nucleotide sequences showed 100% similarity to that of F. oxysporum. To confirm pathogenicity, 20 blueberry plants (cv. Duke) were inoculated by dipping the roots into a conidial suspension (107 conidia per ml) for 30 min. The inoculated plants were transplanted into pots containing sterilized peat and maintained at 25°C and 100% relative humidity in a growth chamber with a daily 12-h photoperiod of fluorescent light. The pathogenicity test was conducted twice. Within 40 days, all inoculated plants developed wilt symptoms similar to that observed in the field. No symptoms were observed on plants dipped into distilled water. The fungus was successfully re-isolated from crowns and roots cultured on APDA, exhibiting morphological characteristics identical to F. oxysporum (1,2), confirming Koch's postulates. To our knowledge, this is the first report of blueberry wilt caused by Fusarium. References: (1) P. M. Kirk et al. The Dictionary of the Fungi, 10th edition, page 159. CABI Bioscience, Wallingford, UK, 2008. (2) W. C. Snyder and H. N. Hansen. Am. J. Bot. 27:64, 1940.


Plant Disease ◽  
2010 ◽  
Vol 94 (11) ◽  
pp. 1378-1378 ◽  
Author(s):  
U. P. Lopes ◽  
L. Zambolim ◽  
H. S. S. Duarte ◽  
P. G. C. Cabral ◽  
O. L. Pereira ◽  
...  

There are more than 300 blackberry (Rubus) species worldwide. Rubus brasiliensis Mart. is a native Brazilian species found in tropical forests. In January 2009, samples of R. brasiliensis with severe leaf blight were collected from an area of rain forest in the city of São Miguel do Anta, State of Minas Gerais, Brazil. Dark spots began developing in the young leaves and progressed to necrotic spots with occasional twig dieback. From the spots, a fungus was isolated with the following morphology: acervuli that were 20 to 50.0 × 50 to 125.0 μm and hyaline amerospores that were ellipsoid and fusiform and 7.5 to 23.75 × 2.5 to 5.0 μm. On the basis of these morphological characteristics, the fungus was identified as Colletotrichum acutatum. In Brazil, C. acutatum is reported in apple, citrus, strawberry, peach, plum, nectarine, olive, medlar, and yerba-mate, but it was not reported as the causal agent of leaf blight in R. brasiliensis. A sample was deposited in the herbarium at the Universidade Federal de Viçosa, Minas Gerais, Brazil (VIC 31210). One representative isolate, OLP 571, was used for pathogenicity testing and molecular studies. Identity was confirmed by amplifying the internal transcribed spacer (ITS) regions of the ribosomal RNA with primers ITS4 (3), CaInt2 (a specific primer for C. acutatum [2]) and CgInt (a specific primer for C. gloeosporioides [1]). Isolates of C. acutatum (DAR78874 and DAR78876) and C. gloeosporioides (DAR78875) obtained from Australian olive trees were used as positive controls. The primers ITS4 and CaInt2 amplified a single DNA product of 500 bp expected for C. acutatum. OLP 571 was grown for 7 days on potato dextrose agar. Young leaves of R. brasiliensis were inoculated with a conidial suspension (106 conidia/ml) on young leaves. Inoculated plants were maintained in a moist chamber for 2 days and subsequently in a greenhouse at 25°C. Necrotic spots similar to those described were detected on young leaves 3 days after the inoculation. Control leaves, on which only water was sprayed, remained healthy. The same fungus was reisolated from the inoculated symptomatic tissues. To our knowledge, this is the first report of C. acutatum causing leaf blight in the native species of R. brasiliensis in Brazil. References: (1) P. R. Mills et al. FEMS Microbiol. Lett. 98:137, 1999. (2) S. Sreenivasaprasad et al. Plant Pathol. 45:650, 1996. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 422-422 ◽  
Author(s):  
C.-N. Xu ◽  
Z.-S. Zhou ◽  
Y.-X. Wu ◽  
F.-M. Chi ◽  
Z.-R. Ji ◽  
...  

An anthracnose disease was observed on stems of high-bush blueberry plants (Vaccinium corymbosum L.) in Liaoning Province, China in 2012. The typical symptoms consist of sudden wilting and dieback of stems during the growing season. Dark brown lesions originate from infected buds and kill portions of the stems. Lesions have grayish white centers, with the necrotic areas becoming 6 to 8 cm in length. Disinfected stem pieces were placed on potato dextrose agar (PDA) and incubated at 28°C for 5 to 7 days, after which the emerging colonies were transferred to fresh PDA. All isolates initially produced white growth, but turned pink after 7 days before becoming blackish green. The average colony diameter was 65.5 to 75.0 mm after 7 days. Conidia were aseptate, hyaline, fusiform to ellipsoid, 8.5 to 16.5 × 2.5 to 4.0 μm in size and single celled with two to seven oil globules. Setae were not found on the acervuli. These characteristics matched published descriptions of Colletotrichum acutatum (1) (teleomorph Glomerella acutata). Pathogenicity test was confirmed in 15 2-year-old healthy potted plants of cv. Berkeley. Stems of 10 plants were punctured with flamed needles and sprayed with 5 ml of conidial suspension (106 conidia per ml in sterile distilled water) of isolate LNSW1. Five control plants were inoculated with sterile distilled water. Seven days after inoculation, eight of the 10 blueberry plants exhibited stem lesions, leaf chlorosis, followed by branch dieback 15 days post-inoculation. The symptoms were similar to those observed on diseased plants in the field, and no lesions were observed on control plants. The pathogen was reisolated from the margin of lesions and identified by colony growth characteristics on PDA. PCR amplification of one isolate (LNSW1) was carried out by utilizing the universal rDNA-ITS primer pair ITS1/ITS4. The sequence (557 bp) of isolate LNSW1 (GenBank Accession No. JX392857) showed 99% identity to G. acutata (AB443950) and C. acutatum (AJ749672) in a BLAST search. An approximately 490-bp fragment was amplified from LNSW1 by the species-specific primer pair CaInt2/ITS4 (2). The pathogen was identified as G. acutata (asexual stage: C. acutatum J.H. Simmonds) on the basis of morphological characters, rDNA-ITS sequence analysis, and a PCR product with species-specific primers. To our knowledge, this is the first report of C. acutatum in high-bush blueberry plants in China. References: (1) C. Lei et al. Fungal Diversity 12:183, 2009. (2) S. Sreenivasaprasad et al. Plant Pathol. 45:650, 1996


Plant Disease ◽  
2021 ◽  
Author(s):  
Ju Wu ◽  
Hanrong Wang ◽  
Li Fang ◽  
Yunye Xie ◽  
Lianping Wang

Rubus corchorifolius is one of the most economically important fruit trees, (Tian et al. 2021). A severe leaf spot disease on leaves of R. corchorifolius was observed in Longquan county, Zhejiang province (118°42’E, 27°42’N) in 2019, with disease incidence of more than 20% on affected plants. The symptoms on leaves of the naturally affected plants were early necrotic lesion with white centers, surrounded by yellow halos (< 5 mm). Later, lesions were expanded with yellowish-brown centers, surrounded by yellow halos (< 5 mm). Putative pathogenic fungi were isolated as described by Fang (1998) and two pure single-colony fungal strains (FPZ1 and FPZ2) were selected for further analysis. The fungi was cultured on potato dextrose agar (PDA) medium for 6 days, at 25°C. The colonies had gray-green centers, white aerial mycelium and gelatinous orange conidial masses. The conidia were unicellular, smooth-walled, hyaline, cylindrical with obtuse to rounded ends, the size 10.15 to 14.09 µm (mean = 12.95 µm, n = 50) × 4.36 to 6.19 µm (mean = 5.19 µm, n = 50) were single, brown to dark brown, ovoid or irregular in shape, and 5.59 to 12.99 µm (mean = 8.77 µm, n = 50) × 4.68 to 10.36 µm (mean = 6.50 µm, n = 50). The characteristics of FPZ1 were consistent with the description of species in the Colletotrichum gloeosporioides complex (Weir et al. 2012). The conidia of FPZ2 were hyaline, smooth-walled, one-celled, fusiform, the size 9.34 to 14.09 µm (mean = 11.92 µm, n = 50) × 3.26 to 6.15 µm (mean = 4.89 µm, n = 50). Appressoria were single, darker brown, elliptical or irregular in outline, and 4.49 to 15.06 µm (mean = 9.88 µm, n = 50) × 3.23 to 7.42 µm (mean = 5.72 µm, n = 50) in size. The characteristics of FPZ2 were consistent with species of the Colletotrichum acutatum complex (Damn et al. 2012). For molecular identification of strains, the internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-tubulin (TUB), chitin synthase (CHS-1), and actin (ACT) genes were sequenced (Weir et al. 2012). For the strain FPZ1, the five sequences obtain were deposited in GenBank (MT846907, MT849313, MT849317, MT849315 and MT849319, respectively). A BLAST search of FPZ1 sequences showed 99% identity with the five loci sequences of type strain C. fructicola ICMP 18581 (JX010165, JX010033, JX010405, JX009866 and FJ907426) (Jayawardena et al. 2016). Similarly, for the strain FPZ2, the five sequences (MT846885, MT849314, MT849318, MT849316 and MT849320, respectively) had 99% identity with the five loci sequences of type strain C. nymphaeae CBS 515.78 (JQ948197, JQ948527, JQ949848, JQ948858 and JQ949518, respectively) (Jayawardena et al. 2016). Based on morphological characteristics and phylogenetic analysis, FPZ1 was identified as C. fructicola and FPZ2 as C. nymphaeae, respestively. For pathogenicity tests, 10 μL conidial suspension (1 × 106 conidia per ml) of FPZ1 was used to inoculate five healthy, non-wounded detached leaves, while five leaves inoculated with sterilized water served as control. The experiment was repeated three times, and all leaves were kept on a mist bench at 27°C and relative humidity 80% for 6 days. The inoculation sites of both FPZ1 and FPZ2 became brown and necrotic, while control leaves developed no symptoms. C. fructicola and C. nymphaeae were re-isolated from the lesions of inoculated leaves, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. fructicola and C. nymphaeae causing leaf spot on Rubus corchorifolius in China, and reports on the prevalence of C. gloeosporioides and C. acutatum species complexes will be beneficial to management of anthracnose in R. corchorifolius.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hafiz Husnain Nawaz ◽  
Rafiq Dogar ◽  
Muhammad Ijaz ◽  
Ashraf Sumrah ◽  
Kamil Husnain ◽  
...  

Anthracnose symptoms on olive (Olea europaea) fruits cv. “Gamlick” were found in farmer orchards in Chakwal, Punjab, Pakistan (32° N and 72° E), with an average prevalence of 59%. Fruit symptoms start as thin, black, sunken lesions with a watery appearance that grow in diameter and coalesce into a large sunken soft zone. Lesions on mature fruit become noticeable in 5 to 6 days after infection, if temperatures are favorable (28°C). On the fruit lesion, orange conidial masses in dispersed or concentric circle arrangement can appear. Fragments (5 mm) were taken from the margins of fruit lesions and surface-sterilized with 70% ethanol (1 min) and 1% NaClO (2 min), cleaned with sterile purified water, blotted dry, and plated on potato dextrose agar (PDA) in Petri dishes. The petri plates were incubated at 27°C. A fungus was consistently isolated, and thirty-five isolates were characterized. Aerial mycelia from olive isolates Colonies were compact, initially white or cream white, then grey, and eventually dark grey, with conidium masses forming in the middle. Mycelium is branched, septate, and hyaline. Conidia are hyaline, aseptate, fusiform, or often cylindrical, with obtuse apices and tapering bases. Their mean size was 8.5µm in length and 3.0 µm in width. Based on morphological features, the fungus was tentatively identified as Colletotrichum acutatum (Agosteo G.E., 2010). The identification was confirmed by amplification and sequencing of a representative isolate's internal transcribed region (ITS), Beta- tubulin region (TUB2), Actin region (ACT), and Glyceraldehyde 3-phosphate dehydrogenase region (GAPDH) with the primers ITS1/ITS4 (Gardes & Bruns 1993), TUB4/TUB5 (Woudenberg et al. 2009), ACT1/ACT3 (Carbone & Kohn 1999) and GDF1/GDR1 (Guerber et al. 2003). BLAST analysis revealed 100% identity for ITS, GAPDH and ACT and 99% identity for TUB, between the sequences of the olive fruit isolate (GenBank Accessions MW647502, MZ436968, MZ714412 and MW810331, respectively) and sequences of C. acutatum reference isolates (GenBank Accessions GO613492, KF975660.1, MT274752.1 and MH547616 respectively). Phylogenetic analysis based on ITS, GAPDH and TUB regions of the olive fruit isolates and reference isolates of various Colletotrichum species using the MEGA X software program confirmed the isolate from olive was C. acutatum. The fungal isolate was deposited as a living culture in the Barani Agricultural Research Institute's fungal culture collection center (BACA.9381). Pathogenicity tests were conducted with this isolate by placing a 20 µl drop of a conidial suspension (3 × 107conidia ml−1) on five healthy olive cv. Gemlik fruits. As a control, five non-inoculated olive fruits were used. Fruits were placed at a temperature of 27°C with artificial light and a photoperiod of 12 hours. Anthracnose symptoms developed only on inoculated fruits after seven days of inoculation. The fungus was re-isolated from symptomatic fruits, and its identity was confirmed through morphological characteristics, thus verifying Koch's postulates. To the best of our knowledge, this is the first report of C. acutatum infecting olive fruits in Chakwal region of Pakistan.


Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 432-432 ◽  
Author(s):  
T. Sundelin ◽  
M. Schiller ◽  
M. Lübeck ◽  
D. F. Jensen ◽  
K. Paaske ◽  
...  

Strawberry (Fragaria × ananassa) is the most important small fruit crop in Denmark. The quarantine pathogen Colletotrichum acutatum was detected for the first time in June 2000 in Denmark in a production field on the island of Falster. Strawberry plants of cv. Kimberly showed typical symptoms of anthracnose fruit rot. On mature fruits, brown-to-black lesions with spore masses that were orange to salmon in color were observed. Mummified berries were also observed. The fungus was isolated and identified on the basis of morphological characteristics, and identification was confirmed using enzyme-linked immunosorbent assay at the Central Science Laboratory, York, U.K. Species-specific polymerase chain reaction with the C. acutatum-specific primer pairs acut1/col2 (1) and CaInt2/ITS4 (3) also supported the identification. Additionally, the internal transcribed spacer regions, ITS1 and ITS2, of the ribosomal DNA were sequenced in both directions (GenBank Accession No. AY818361). Homology searches with this sequence using BLAST also confirmed the identity. Colonies grown on potato dextrose agar developed white-to-grey aerial mycelium with salmon-colored spore masses, and were beige to black on the reverse side. Conidia were 11.3 (7.3 to 16.6) μm × 3.9 (2.5 to 5.2) μm, hyaline, cylindrical with at least one pointed end, and aseptate. Mycelial growth rate was 8.4 mm per day at 25°C which is similar to earlier reports (2). Spray-inoculated (106 conidia per ml) strawberry fruits cv. Elsanta developed brown, sunken, irregular lesions with salmon-colored acervuli after 2 to 5 days at 25°C. Koch's postulates were fulfilled since the reisolated fungus from these lesions developed the same morphological characteristics as described above. To our knowledge, this is the first report of C. acutatum in Denmark. References: (1) P. V. Martinez-Culebras et al. J. Phytopathol. 151:135, 2003. (2) B. J. Smith et al. Plant Dis. 74:69, 1990. (3) S. Sreenivasaprasad et al. Plant Pathol. 45:650, 1996.


Plant Disease ◽  
2020 ◽  
Author(s):  
Boxun Li ◽  
Xianbao Liu ◽  
Cai Jimiao ◽  
Yanli Feng ◽  
Guixiu Huang

Natural rubber is an important industrial raw material and an economically important perennial in China. In recent years, A new leaf fall disease, caused by Neopestalotiopsis aotearoa Maharachch., K.D. Hyde & Crous, has occurred in Indonesia, Malaysia, Thailand, Sri Lanka, and other major rubber planting countries. In May and July of 2020, this disease was first found on 2-year-old rubber seedlings in two plantations located in Ledong and Baisha counties in Hainan Province, China. In the two plantations of approximately 32 ha, 15% of the rubber seedlings had the disease and the defoliation was more than 20%. The infected leaves turned yellow and watery, and dark brown and nearly round lesions of 1-2 mm in diameter were formed on the leaves. When the humidity was high, the center of the lesion was grey-white, and the lesions had many small black dots, black margins and surrounded by yellow halos. When the disease was severe, leaves fell off. To identify the pathogen, leaf tissues were collected from lesion margins after leaf samples were surface-sterilized in 75% ethanol, rinsed with sterile water for three times, and air dried. The leaf tissues were plated on potato dextrose agar (PDA) and incubated at 28°C for seven days. Fungal cultures with similar morphology were isolated from 90% of tested samples and two isolates (HNPeHNLD2001 and HNPeHNLD2002) were used in pathogenicity and molecular tests. Rubber leaves (clone PR107) were inoculated with conidial suspension (106 conidia/ml), and inoculated with PDA were used as the control, Each treatment had 3 leaves, and each leaf was inoculated with 3 spots and incubated at 28oC under high moisture conditions. Five days later, leaves inoculated with conidial suspension showed black leaf spots resembling the disease in the field, whereas the control leaves remained symptomless. The fungal cultures isolated from the inoculated tissues, had identical morphology compared with the initial isolates. Colonies on PDA were 55–60 mm in diameter after seven days at 28°C, with undulate edges, pale brown, thick mycelia on the surface with black, gregarious conidiomata; and the reverse side was similar in color. Black conidia were produced after eight days of culture on PDA. Conidia were fusoid, ellipsoid, straight to slightly curved, 4-septate, ranged from 18.35 to 27.12 μm (mean 22.34 μm) × 4.11 to 7.03 μm (mean 5.41 μm). The basal cells were conic with a truncate base, hyaline, rugose and thin-walled, 4.35 to 6.33 μm long (mean 4.72 μm). Three median cells were doliform, 12.53 to 18.97 μm long (mean 15.26 μm), hyaline, cylindrical to subcylindrical, thin- and smooth-walled, with 2–3 tubular apical appendages, arising from the apical crest, unbranched, filiform, 14.7 to 25.3 μm long (mean 19.94 μm). The basal appendages were singlar, tubular, unbranched, centric, 3.13 to 7.13 μm long (mean 5.48 μm). Morphological characteristics of the isolates were similar to the descriptions of N. aotearoa (Maharachchikumbura et al. 2014). The rDNA internal transcribed spacer (ITS) region, translation elongation factor 1-αgenes (TEF), and beta-tubulin (TUB2) gene were amplified using the primer pairs ITS1/ITS4, EF1-728F/EF1-986R and T1/Bt-2b (Pornsuriya et al. 2020), respectively. The sequences of these genes were deposited in GenBank (ITS Accession Nos.: MT764947 and MT764948; TUB2: MT796262 and MT796263; TEF: MT800516 and MT800517). According to the latest classification of Neoprostalotiopsis spp. (Maharachchikumbura et al. 2014) and multilocus phylogeny, isolates HNPeHNLD2001 and HNPeHNLD2002 were clustered in the same branch with N. aotearoa. Thus, the pathogen was identified as N. aotearoa, which is different from N. cubana and N. formicarum reported in Thailand (Pornsuriya et al. 2020; Thaochan et al. 2020). The Neopestalotiopsis leaf spotdisease of rubber tree (H. brasiliensis) was one of the most serious and destructive leaf diseases in major rubber planting countries in Asia. ( Tajuddin et al. 2020) The present study of leaf fall disease on rubber tree caused byN. aotearoa is the first report in China. The finding provides the basic pathogen information for further monitoring the disease and its control.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 691-691 ◽  
Author(s):  
Y. H. Jeon ◽  
W. Cheon

Worldwide, Japanese yew (Taxus cuspidata Sieb. & Zucc.) is a popular garden tree, with large trees also being used for timber. In July 2012, leaf blight was observed on 10% of Japanese yew seedling leaves planted in a 500-m2 field in Andong, Gyeongsangbuk-do Province, South Korea. Typical symptoms included small, brown lesions that were first visible on the leaf margin, which enlarged and coalesced into the leaf becoming brown and blighted. To isolate potential pathogens from infected leaves, small sections of leaf tissue (5 to 10 mm2) were excised from lesion margins. Eight fungi were isolated from eight symptomatic trees, respectively. These fungi were hyphal tipped twice and transferred to potato dextrose agar (PDA) plates for incubation at 25°C. After 7 days, the fungi produced circular mats of white aerial mycelia. After 12 days, black acervuli containing slimy spore masses formed over the mycelial mats. Two representative isolates were further characterized. Their conidia were straight or slightly curved, fusiform to clavate, five-celled with constrictions at the septa, and 17.4 to 28.5 × 5.8 to 7.1 μm. Two to four 19.8- to 30.7-μm-long hyaline filamentous appendages (mostly three appendages) were attached to each apical cell, whereas one 3.7- to 7.1-μm-long hyaline appendage was attached to each basal cell, matching the description for Pestalotiopsis microspora (2). The pathogenicity of the two isolates was tested using 2-year-old plants (T. cuspidata var. nana Rehder; three plants per isolate) in 30-cm-diameter pots filled with soil under greenhouse conditions. The plants were inoculated by spraying the leaves with an atomizer with a conidial suspension (105 conidia/ml; ~50 ml on each plant) cultured for 10 days on PDA. As a control, three plants were inoculated with sterilized water. The plants were covered with plastic bags for 72 h to maintain high relative humidity (24 to 28°C). At 20 days after inoculation, small dark lesions enlarged into brown blight similar to that observed on naturally infected leaves. P. microspora was isolated from all inoculated plants, but not the controls. The fungus was confirmed by molecular analysis of the 5.8S subunit and flanking internal transcribed spaces (ITS1 and ITS2) of rDNA amplified from DNA extracted from single-spore cultures, and amplified with the ITS1/ITS4 primers and sequenced as previously described (4). Sequences were compared with other DNA sequences in GenBank using a BLASTN search. The P. microspora isolates were 99% homologous to other P. microspora (DQ456865, EU279435, FJ459951, and FJ459950). The morphological characteristics, pathogenicity, and molecular data assimilated in this study corresponded with the fungus P. microspora (2). This fungus has been previously reported as the causal agent of scab disease of Psidium guajava in Hawaii, the decline of Torreya taxifolia in Florida, and the leaf blight of Reineckea carnea in China (1,3). Therefore, this study presents the first report of P. microspora as a pathogen on T. cuspidata in Korea. The degree of pathogenicity of P. microspora to the Korean garden evergreen T. cuspidata requires quantification to determine its potential economic damage and to establish effective management practices. References: (1) D. F. Farr and A. Y. Rossman, Fungal Databases, Syst. Mycol. Microbiol. Lab. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ (2) L. M. Keith et al. Plant Dis. 90:16, 2006. (3) S. S. N. Maharachchikumbura. Fungal Diversity 50:167, 2011. (4) T. J. White et al. PCR Protocols. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1434-1434
Author(s):  
J.-H. Kwon ◽  
D.-W. Kang ◽  
M.-G. Cheon ◽  
J. Kim

In South Korea, the culture, production, and consumption of blueberry (Vaccinium corymbosum) have increased rapidly over the past 10 years. In June and July 2012, blueberry plants with leaf spots (~10% of disease incidence) were sampled from a blueberry orchard in Jinju, South Korea. Leaf symptoms included small (1 to 5 mm in diameter) brown spots that were circular to irregular in shape. The spots expanded and fused into irregularly shaped, large lesions with distinct dark, brownish-red borders. The leaves with severe infection dropped early. A fungus was recovered consistently from sections of surface-disinfested (1% NaOCl) symptomatic leaf tissue after transfer onto water agar and sub-culture on PDA at 25°C. Fungal colonies were dark olive and produced loose, aerial hyphae on the culture surfaces. Conidia, which had 3 to 6 transverse septa, 1 to 2 longitudinal septa, and sometimes also a few oblique septa, were pale brown to golden brown, ellipsoid to ovoid, obclavate to obpyriform, and 16 to 42 × 7 to 16 μm (n = 50). Conidiophores were pale to mid-brown, solitary or fasciculate, and 28 to 116 × 3 to 5 μm (n = 50). The species was placed in the Alternaria alternata group (1). To confirm the identity of the fungus, the complete internal transcribed spacer (ITS) rDNA region of a representative isolate, AAVC-01, was amplified using ITS1 and ITS4 primers (2). The DNA products were cloned into the pGEM-T Easy vector (Promega, Madison, WI) and the resulting pOR13 plasmid was sequenced using universal primers. The resulting 570-bp sequence was deposited in GenBank (Accession No. KJ636460). Comparison of ITS rDNA sequences with other Alternaria spp. using ClustalX showed ≥99% similarity with the sequences of A. alternata causing blight on Jatropha curcas (JQ660842) from Mexico and Cajannus cajan (JQ074093) from India, citrus black rot (AF404664) from South Africa, and other Alternaria species, including A. tenuissima (WAC13639) (3), A. lini (Y17071), and A. longipes (AF267137). Two base substitutions, C to T at positions 345 and 426, were found in the 570-bp amplicon. Phylogenetic analysis revealed that the present Alternaria sp. infecting blueberry grouped separately from A. tenuissima and A. alternata reported from other hosts. A representative isolate of the pathogen was used to inoculate V. corymbosum Northland leaves for pathogenicity testing. A conidial suspension (2 × 104 conidia/ml) from a single spore culture and 0.025% Tween was spot inoculated onto 30 leaves, ranging from recently emerged to oldest, of 2-year-old V. corymbosum Northland plants. Ten leaves were treated with sterilized distilled water and 0.025% Tween as a control. The plants were kept in a moist chamber with >90% relative humidity at 25°C for 48 h and then moved to a greenhouse. After 15 days, leaf spot symptoms similar to those observed in the field developed on the inoculated leaves, whereas the control plants remained asymptomatic. The causal fungus was re-isolated from the lesions of the inoculated plants to fulfill Koch's postulates. To our knowledge, this is the first report of Alternaria sp. on V. corymbosum in South Korea. References: (1) E. G. Simmons. Page 1797 in: Alternaria: An Identification Manual. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands, 2007. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (3) M. P. You et al. Plant Dis. 98:423, 2014.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Sign in / Sign up

Export Citation Format

Share Document