scholarly journals First Report of Rhizomania of Sugar Beet in the Columbia River Basin of Washington and Oregon

Plant Disease ◽  
2002 ◽  
Vol 86 (1) ◽  
pp. 72-72 ◽  
Author(s):  
J. J. Gallian ◽  
W. M. Wintermantel ◽  
P. B. Hamm

Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV) and vectored by the soilborne fungus, Polymyxa betae Keskin, is one of the most economically damaging diseases affecting sugar beet (Beta vulgaris L.) worldwide and has been found in most sugar beet-growing areas of the United States (2). During harvest in October 2000, sugar beet plants exhibiting typical symptoms of rhizomania (1) were found in a field near Paterson, WA. Sugar beet had been planted in the field in 1999 and 2000, but prior to this, the field had not been planted with sugar beet for approximately 20 years. Symptomatic roots from the field exhibited stunting, vascular discoloration, and proliferation of lateral rootlets. Leaves of affected plants were chlorotic. Four soil samples were taken from symptomatic areas of the field and diluted with an equal amount of sterile sand. Seeds of rhizomania-susceptible sugar beet cv. Beta 8422 were planted in the soil and sand mix and maintained in a controlled environment at 24°C and 12 h of daylight at one location and in the greenhouse at another. After 8 weeks, enzyme-linked immunosorbent assay (ELISA) was performed on roots of plants grown at each location. Triple-antibody sandwich (TAS) ELISA (Agdia, Inc., Elkhart, IN) was conducted at the University of Idaho, Twin Falls, ID and double-antibody sandwich (DAS) ELISA was performed at USDA-ARS, Salinas, CA, with antiserum specific for BNYVV (2). Two of four samples were positive for BNYVV in the ELISA tests at both locations based on absorbance values at least three times those of healthy controls. TAS-ELISA tests were conducted on roots collected in July 2001 from a field in Washington, 12.9 km from the first field, as well as from a field across the Columbia River near Boardman, OR. Samples from both fields tested positive for BNYVV. All three fields are within 24 km of one another. Four additional fields have subsequently been confirmed to be infected with BNYVV in this region, based on symptomology and ELISA. There are approximately 3,240 ha of sugar beet grown in the region, and growers have been advised as a result of this confirmation to plant resistant cultivars and increase the sugar beet rotation interval with nonhost crops to a minimum of 4 years. References: (1) J. E. Duffus. Rhizomania. Pages 29–30 in: Compendium of Beet Diseases and Insects. E. D. Whitney and J. E. Duffus, eds. The American Phytopathological Society, St. Paul, MN, 1986. (2) G. C. Wisler et al. Plant Dis. 83:864, 1999.

Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 201-201 ◽  
Author(s):  
William M. Wintermantel ◽  
Teresa Crook ◽  
Ralph Fogg

Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV) and vectored by the soilborne fungus Polymyxa betae Keskin, is one of the most economically damaging diseases affecting sugar beet (Beta vulgaris L.). The virus likely originated in Europe and was first identified in California in 1983 (1). It has since spread among American sugar beet production regions in spite of vigorous sanitation efforts, quarantine, and disease monitoring (3). In the fall of 2002, mature sugar beet plants exhibiting typical rhizomania root symptoms, including proliferation of hairy roots, vascular discoloration, and some root constriction (2) were found in several fields scattered throughout central and eastern Michigan. Symptomatic beets were from numerous cultivars, all susceptible to rhizomania. Two to five sugar beet root samples were collected from each field and sent to the USDA-ARS in Salinas, CA for analysis. Hairy root tissue from symptomatic plants was used for mechanical inoculation of indicator plants. Mechanical inoculation produced necrotic lesions on Chenopodium quinoa and systemic infection of Beta vulgaris ssp. macrocarpa, both typical of BNYVV and identical to control inoculations with BNYVV. Symptomatic sugar beet roots were washed and tested using double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) for the presence of BNYVV using standard procedures and antiserum specific for BNYVV (3). Sugar beet roots were tested individually, and samples were considered positive when absorbance values were at least three times those of greenhouse-grown healthy sugar beet controls. Samples were tested from 16 fields, with 10 confirmed positive for BNYVV. Positive samples had mean absorbance values ranging from 0.341 to 1.631 (A405nm) after 30 min. The mean healthy control value was 0.097. Fields were considered positive if one beet tested positive for BNYVV, but in most cases, all beets tested from a field were uniformly positive or uniformly negative. In addition, soil-baiting experiments were conducted on seven of the fields. Sugar beet seedlings were grown in soil mixed with equal parts of sand for 6 weeks and were subsequently tested using DAS-ELISA for BNYVV. Results matched those of the root sampling. Fields testing positive for BNYVV were widely dispersed within a 100 square mile (160 km2) area including portions of Gratiot, Saginaw, Tuscola, and Sanilac counties in the central and eastern portions of the Lower Peninsula of Michigan. The confirmation of rhizomania in sugar beet from the Great Lakes Region marks the last major American sugar beet production region to be diagnosed with rhizomania disease, nearly 20 years after its discovery in California (1). In 2002, there were approximately 185,000 acres (approximately 75,00 ha) of sugar beet grown in the Great Lakes Region, (Michigan, Ohio, and southern Ontario, Canada). The wide geographic distribution of infested fields within the Michigan growing area suggests the entire region should monitor for symptoms, increase rotation to nonhost crops, and consider planting rhizomania resistant sugar beet cultivars to infested fields. References:(1) J. E. Duffus et al. Plant Dis. 68:251, 1984. (2) J. E. Duffus. Rhizomania. Pages 29–30 in: Compendium of Beet Diseases and Insects, E. D. Whitney and J. E. Duffus eds. The American Phytopathological Society, St. Paul, MN, 1986. (3) G. C. Wisler et al. Plant Dis. 83:864, 1999.


Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1043-1047 ◽  
Author(s):  
H.-Y. Liu ◽  
R. T. Lewellen

Rhizomania, a serious disease of sugar beet (Beta vulgaris), is caused by Beet necrotic yellow vein virus (BNYVV). Resistance allele Rz1 has been widely incorporated into commercial cultivars. Recently, resistance-breaking isolates of BNYVV (RB-BNYVV) were identified and characterized. When the occurrence of RB-BNYVV was surveyed throughout the sugar-beet-growing areas in the United States, most soil samples contained Beet oak-leaf virus (BOLV) as well. BNYVV and BOLV often occurred in the same field and sometimes in the same sugar beet plant. The possibility of interactions between these two Polymyxa betae-transmitted sugar beet viruses was tested. Plants grown in soils infested with aviruliferous P. betae or carrying RB-BNYVV and BOLV, alone and in combination, were compared with plants grown in noninfested soil for differences in plant fresh weight and virus content as measured by enzyme-linked immunosorbent assay (ELISA). Rz1 and Rz2 resistance genes that condition resistance to BNYVV did not confer resistance to BOLV. BNYVV ELISA values were significantly higher in single infections than in mixed infections with BOLV in both the rhizomania-resistant and -susceptible cultivars. In contrast, ELISA values of BOLV were not significantly different between single and mixed infections in both the rhizomania-resistant and -susceptible cultivars. Results indicate that BOLV may suppress BNYVV in mixed infections. Soils infested with P. betae significantly reduced fresh weight of sugar beet seedlings regardless of whether they were with or without one or both viruses or resistance genes.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 681-681
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata Sieb. and Zucc. (columbine) is a perennial garden species belonging to the family Ranunculaceae. During the summer of 2003, a severe outbreak of a previously unknown powdery mildew was observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed infected leaves turned yellow and died. Foot cell was cylindric and appressorium lobed. Conidia were hyaline, ellipsoid, and measured 31.2 to 47.5 × 14.4 to 33 μm (average 38.6 × 21.6 μm). Fibrosin bodies were not present. Cleistothecia were globose, brown, had simple appendages, ranged from 82 to 127 (average 105) μm in diameter, and contained one to two asci. Ascocarp appendages measured five to eight times the ascocarp diameter. Asci were cylindrical (ovoidal) and measured 45.3 to 58.2 × 30.4 to 40.2 μm. Ascospores (three to four per ascus) were ellipsoid or cylindrical and measured 28.3 to 31.0 × 14.0 to 15.0 μ;m. On the basis of its morphology, the pathogen was identified as Erysiphe aquilegiae var. aquilegiae (1). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five, healthy A. flabellata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a garden where temperatures ranged between 20 and 30°C. After 10 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on Aquilegia flabellata in Italy. E. communis (Wallr.) Link and E. polygoni DC. were reported on several species of Aquilegia in the United States (2), while E. aquilegiae var. aquilegiae was previously observed on A. flabellata in Japan and the former Union of Soviet Socialist Republics (3). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Nova Hedwigia, 89:700, 1987. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) K. Hirata. Host Range and Geographical Distribution of the Powdery Mildews. Faculty of Agriculture, Niigata University, 1966.


Plant Disease ◽  
1999 ◽  
Vol 83 (9) ◽  
pp. 864-870 ◽  
Author(s):  
G. C. Wisler ◽  
R. T. Lewellen ◽  
J. L. Sears ◽  
H.-Y. Liu ◽  
J. E. Duffus

Levels of beet necrotic yellow vein virus (BNYVV), as measured by triple-antibody sandwich-enzyme-linked immunosorbent assay (TAS-ELISA), were compared with biological evaluations in representative commercial and experimental sugar beet cultivars developed for production in the United States and ranging in their reactions to rhizomania from uniformly susceptible to highly resistant. TAS-ELISA was specific for BNYVV and did not react with related soilborne sugar beet viruses. Differences in absorbance (A405nm) values measured in eight cultivars closely correlated with the dosage and frequency of the Rz allele, which conditions resistance to BNYVV. A diploid (Rzrz) hybrid had a significantly lower absorbance value (less virus) than a similar triploid (Rzrzrz) hybrid. Cultivars that segregated (Rzrz:rzrz) had higher absorbance values than uniformly resistant (Rzrz) hybrids, as was expected. For all cultivars, absorbance values decreased as the season progressed. Absorbance value was significantly positively correlated with rhizomania disease index score and negatively correlated with individual root weight, plot root weight, and sugar yield. This information should be useful in resistance-breeding and -evaluation programs and in the sugar industry when considering cultivar choice, inoculum production, and future crop rotations.


Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 847-851 ◽  
Author(s):  
H.-Y. Liu ◽  
R. T. Lewellen

Beet necrotic yellow vein virus (BNYVV) is the causal agent of rhizomania in sugar beet (Beta vulgaris). The virus is transmitted by the plasmodiophorid Polymyxa betae. The disease is controlled primarily by the use of partially resistant cultivars. During 2003 and 2004 in the Imperial Valley of California, partially resistant sugar beet cultivars with Rz1 allele seemed to be compromised. Field trials at Salinas, CA have confirmed that Rz1 has been defeated by resistance-breaking isolates. Distinct BNYVV isolates have been identified from these plants. Rhizomania-infested sugar beet fields throughout the United States were surveyed in 2004–05. Soil surveys indicated that the resistance-breaking isolates not only existed in the Imperial Valley and San Joaquin Valley of California but also in Colorado, Idaho, Minnesota, Nebraska, and Oregon. Of the soil samples tested by baited plant technique, 92.5% produced infection with BNYVV in ‘Beta 6600’ (rz1rz1rz1), 77.5% in ‘Beta 4430R’ (Rz1rz1), 45.0% in ‘Beta G017R’ (Rz2rz2), and 15.0% in ‘KWS Angelina’ (Rz1rz1+Rz2rz2). Analyses of the deduced amino acid sequence of coat protein and P-25 protein of resistance-breaking BNYVV isolates revealed the high percentage of identity with non-resistance-breaking BNYVV isolates (99.9 and >98.0%, respectively). The variable amino acids in P-25 proteins were located at the residues of 67 and 68. In the United States, the two amino acids found in the non-resistance-breaking isolates were conserved (AC). The resistance-breaking isolates were variable including, AF, AL, SY, VC, VL, and AC. The change of these two amino acids cannot be depended upon to differentiate resistance-breaking and non-resistance-breaking isolates of BNYVV.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1115-1115 ◽  
Author(s):  
F. M. Assis Filho ◽  
A. Harness ◽  
M. Tiffany ◽  
A. Gera ◽  
S. Spiegel ◽  
...  

A novel carmovirus infecting angelonia (Angelonia angustifolia) was recently described independently by researchers in the United States, Israel, and Germany (1,2,4). Angelonia flower break virus (AnFBV) and Angelonia flower mottle virus were proposed as appropriate names for this carmovirus. The virus, causing stunting, mild leaf mottle, flower mottling, and flower breaking symptoms has been detected in naturally infected angelonia in the United States, Israel, and Germany (2,4). Here we report the first detection of natural infection of verbena (in the United States and Israel) and phlox (in the United States) by using a recently developed double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA; Agdia, Elkhart, IN). Prior to this report, verbena was considered insusceptible to carmovirus infection (3) and phlox was known as an experimental host for AnFBV (2). A comparative serological study including 27 virus species, demonstrated that DAS-ELISA did not cross-react with any viruses that commonly infect ornamentals or are related to carmoviruses, showing that the polyclonal antibodies are specific to AnFBV. Antibody specificity was confirmed by the carmovirus group PCR test (Agdia). Furthermore, reverse transcription-polymerase chain reaction with AnFBV specific primers (2) produced the expected 1172-bp band from all ELISA-positive samples tested. Between November 2005 and March 2006, AnFBV was detected in 181 of 567 verbena, 26 of 143 phlox, and 193 of 267 angelonia samples submitted to Agdia Testing Services by commercial ornamental propagators for virus testing. Most samples were asymptomatic, although a few exhibited mild leaf mottle. It should be noted that the number of AnFBV-infected samples might not accurately reflect the actual number of commercially produced plants infected with AnFBV because most of the samples analyzed originated from virus elimination programs. The detection of natural AnFBV infection of verbena, phlox, and angelonia suggests that AnFBV may be more widespread in the ornamental industry than previously thought. References: (1) S. Adkins et al. Phytopathology (Abstr.) 95(suppl.):S2, 2005. (2) S. Adkins et al. Phytopathology 96:460, 2006. (3) G. P. Martelli and M. Russo. Online publication. ICTVdB-The Universal Virus Database. 00.074.0.02, 2004. (4) S. Winter et al. New Disease Reports. Vol 12. Brit. Soc. Plant Pathol. Online publication, 2005.


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 110-110 ◽  
Author(s):  
C. Rubies Autonell ◽  
C. Ratti ◽  
R. Resca ◽  
M. De Biaggi ◽  
J. Ayala García

Beet virus Q (BVQ) is a member of the genus Pomovirus that is transmitted by Polymyxa betae Keskin. Initially described as the Wierthe serotype of Beet soilborne virus (BSBV), BVQ is now considered a distinct virus species based on its genomic properties (1). BVQ is commonly found in fields where BSBV and the causal agent of rhizomania disease, Beet necrotic yellow vein virus (BNYVV), are also present. Simultaneous infection of sugar beet plants with multiple virus species could affect disease symptom expression (4). For this reason, the pathogenicity of BVQ and its role in the epidemiology of rhizomania disease remain a subject of study. During 2004, six soil samples were collected from different sites in the Castilla-La Mancha Region in Spain (Albacete and Ciudad Real provinces) where rhizomania symptoms were observed in BNYVV-tolerant sugar beet cultivars. Soil from the Hainaut Region of Belgium, infected with BNYVV, BSBV, and BVQ and supplied by Prof. C. Bragard (Unité de Phytopathologie, Université Catholique de Louvain, Belgium) was used as a positive control. Sugar beet plants (cv. Asso) were grown in the soil samples for 45 days at 24°C and then root tissue was harvested. All samples were analyzed using enzyme-linked immunosorbent assay (ELISA) with commercial BNYVV antiserum (BIOREBA AG, Reinach, Switzerland) and BSBV/BVQ antisera (IC10 and 6G2) supplied by R. Koenig (Federal Biological Research Centre for Agriculture and Forestry, Braunschweig, Germany). Total RNA extracted from sugar beet roots as previously described (3) was tested using reverse transcription-polymerase chain reaction (RT-PCR). Primers BVQ3F (5′-GTT TTC AAA CTT GCC ATC CT-3′) and BVQ3R2 (5′-CCA CAA TGG GCC AAT AGA-3′), which amplify a 690-bp fragment of the triple gene block region of BVQ RNA 3, were designed based on the published sequence (GenBank Accession No. AJ223598). The presence of BSBV and BNYVV was assayed using RT-PCR with previously described primers (2,3). BVQ was detected from plants grown in soil collected from La Roda (Albacete) in Spain and from Hainaut in Belgium. The fragments amplified from Spanish sample with BVQ3F and BVQ3R2 (GenBank Accession No. AY849375) showed 95.9% nucleotide sequence identity with the previously published sequence of BVQ (1). The La Roda BVQ isolate was mechanically transmitted to Chenopodium quinoa from infected sugar beet root tissue. BVQ was detected using RT-PCR in local lesions that appeared approximately 5 days after inoculation and subsequently spread along veins. To our knowledge, this is the first report of BVQ in soil from Spain, although it has been previously reported in Belgium, Bulgaria, France, Germany, Hungary, and the Netherlands (2). BSBV and BNYVV (type A) were detected in all six Spanish samples, as well as in the Belgian soil. References: (1) R. Koenig et al. J. Gen. Virol. 79:2027, 1998. (2) A. Meunier et al. Appl. Environ Microbiol. 69:2356, 2003. (3) C. Ratti et al. J. Virol. Methods 124:41, 2005. (4) C. Rush Annu. Rev Phytopathol 41:567, 2003.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 526-526 ◽  
Author(s):  
S. Adkins ◽  
C. A. Baker

Desert rose (Adenium obesum (Forssk.) Roem. & Schult), a member of the family Apocynaceae, is characterized by fleshy stems and leaves and colorful flowers. This exotic ornamental, originally from southeast Africa, is propagated vegetatively and is a perennial in warm climates. Virus-like foliar symptoms, including chlorotic ring and line patterns, were observed in the fall of 2004 on one of five stock plants being maintained in a greenhouse in Fort Pierce, FL. Inclusion body morphology suggested the presence of a Tospovirus in the symptomatic plant, and Tomato spotted wilt virus (TSWV) was specifically identified in this plant using a commercially available double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA; Agdia, Elkhart, IN). TSWV was not detected in symptomless desert rose plants nor was Impatiens necrotic spot virus detected in any of the plants using DAS-ELISA. Graft transmission of TSWV to other desert rose plants was successful. Sequence analysis of a nucleocapsid (N) protein gene fragment amplified by reverse transcription-polymerase chain reaction (RT-PCR) with primers TSWV723 and TSWV722 (1) from total RNA of the symptomatic plant confirmed the diagnosis. Nucleotide and deduced amino acid sequences of a 579-bp region of the RT-PCR product were 95 to 99% and 95 to 100% identical, respectively, to TSWV N-gene sequences in GenBank. No product was amplified from symptomless plants. Since these 3-year-old plants were grown on-site from seed and only expressed symptoms 2 months following damage to the greenhouse by hurricanes Frances and Jeanne, it is likely that viruliferous thrips were introduced from local vegetable or ornamental production areas during or following the storms. To our knowledge, this is the first report of TSWV infection of desert rose in Florida, although TSWV was observed in this plant in Europe approximately 10 years ago (3,4). Because of the wide distribution of TSWV in the United States, the increasing popularity of desert rose, and the recent identification of Cucumber mosaic virus in this host (2), attention to sanitation and insect vector management is merited during desert rose propagation and production. References: (1) S. Adkins and E. N. Rosskopf. Plant Dis. 86:1310, 2002. (2) C. A. Baker et al. Plant Dis. 87:1007, 2003. (3) J. Mertelik et al. Acta Hortic. 432:368, 1996. (4) J. Th. J. Verhoeven and J. W. Roenhorst. Acta Hortic. 377:175, 1994.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 423-423 ◽  
Author(s):  
J. A. M. Rezende ◽  
V. M. Camelo ◽  
D. Flôres ◽  
A. P. O. A. Mello ◽  
E. W. Kitajima ◽  
...  

Beet necrotic yellow vein virus (BNYVV) is an economically important pathogen of sugar beet (Beta vulgaris var. saccharifera) in several European, and Asian countries and in the United States (3). The virus is transmitted by the soil-inhabiting plasmodiophorid Polymyxa betae and causes the rhizomania disease of sugar beet. In November 2012, plants of B. vulgaris subsp. vulgaris cv. Boro (red table beet) exhibiting mainly severe characteristic root symptom of rhizomania were found in a commercial field located in the municipality of São José do Rio Pardo, State of São Paulo, Brazil. No characteristic virus-inducing foliar symptom was observed on diseased plants. The incidence of diseased plants was around 70% in the two visited crops. As the hairy root symptom is indicative of infection by BNYVV, the present study aimed to detect and identify this virus associated with the diseased plants. Preliminary leaf dip analysis by transmission electron microscopy revealed the presence of very few benyvirus-like particles. Total RNA was extracted from roots of three symptomatic plants and one asymptomatic plant according to Toth et al. (3). One-step reverse-transcription–polymerase chain reaction (RT-PCR) was performed as described by Morris et al. (2) with primers that amplify part of the coat protein gene at RNA2. The initial assumption that the hairy root symptom was associated with BNYVV infection was confirmed by the amplification of a fragment of ~500 bp from all three symptomatic samples. No amplicon was obtained from the asymptomatic control plant. Amplicons were directly sequenced, and the consensus nucleotide and deduced amino acid sequences showed 100% identity. The nucleotide sequence for one amplicon (Accession No. KM433683) was compared with other sequences deposited in GenBank. The nucleotide (468 nt) and deduced amino acid (156 aa) sequences shared 93 to 100 and 97 to 99% identity, respectively with the corresponding nucleotide and amino acid sequences for other isolates of type A of BNYVV. The virus was transmitted to three of 10 red table beet plants inoculated with contaminated soil, and infection was confirmed by nested RT-PCR, as described by Morris et al. (1), and nucleotide sequencing. This is the first report on the occurrence of BNYVV in Brazil, which certainly will affect the yield of red table beet in the producing region. Therefore, mapping of the occurrence of BNYVV in red table beet-producing areas in Brazil for containment of the spread of the virus is urgent. In the meantime, precautions should be taken to control the movement of contaminated soil and beet roots, carrots, or any vegetable grown on infested land that might introduce the virus to still virus-free regions. References: (1) J. Morris et al. J. Virol. Methods 95:163, 2001. (2) D. D. Sutic et al. Handbook of Plant Virus Diseases. CRC Press, Boca Raton, Florida, 1999. (3) I. K. Toth et al. Methods for the Detection and Quantification of Erwinia carotovora subsp. atroseptica (Pectobacterium carotovorum subsb. atrosepticum) on Potatoes: A Laboratory Manual. Scottish Crop Research Institute, Dundee, Scotland, 2002.


PMLA ◽  
2012 ◽  
Vol 127 (4) ◽  
pp. 1017-1018
Author(s):  
Michelle Balaev

I appreciate Harold Fromm's emphasis on the diverse approaches found in the ecocritical field and on the relevance of ecocriticism to the goals and activities of the MLA because this was the future envisioned by the early scholars. Ecocriticism is an expansive, interdisciplinary field of study that arose from a shared desire for a new literary theory and practice. This shared interest has made ecocriticism a robust field that continues to grow, as seen in the newest ecocriticism program in the United States: the literature-and-environment program that started in the fall of 2012 in the English department at the University of Idaho, spearheaded by Scott Slovic, Jennifer Ladino, Erin James, Janis Johnson, and Jodie Nicotra. The field is also becoming rooted as an academic discipline around the world, in countries such as China, India, Brazil, and Australia, to name only a few.


Sign in / Sign up

Export Citation Format

Share Document