scholarly journals Natural Infection of Verbena and Phlox by a Recently Described Member of the Carmovirus Genus

Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1115-1115 ◽  
Author(s):  
F. M. Assis Filho ◽  
A. Harness ◽  
M. Tiffany ◽  
A. Gera ◽  
S. Spiegel ◽  
...  

A novel carmovirus infecting angelonia (Angelonia angustifolia) was recently described independently by researchers in the United States, Israel, and Germany (1,2,4). Angelonia flower break virus (AnFBV) and Angelonia flower mottle virus were proposed as appropriate names for this carmovirus. The virus, causing stunting, mild leaf mottle, flower mottling, and flower breaking symptoms has been detected in naturally infected angelonia in the United States, Israel, and Germany (2,4). Here we report the first detection of natural infection of verbena (in the United States and Israel) and phlox (in the United States) by using a recently developed double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA; Agdia, Elkhart, IN). Prior to this report, verbena was considered insusceptible to carmovirus infection (3) and phlox was known as an experimental host for AnFBV (2). A comparative serological study including 27 virus species, demonstrated that DAS-ELISA did not cross-react with any viruses that commonly infect ornamentals or are related to carmoviruses, showing that the polyclonal antibodies are specific to AnFBV. Antibody specificity was confirmed by the carmovirus group PCR test (Agdia). Furthermore, reverse transcription-polymerase chain reaction with AnFBV specific primers (2) produced the expected 1172-bp band from all ELISA-positive samples tested. Between November 2005 and March 2006, AnFBV was detected in 181 of 567 verbena, 26 of 143 phlox, and 193 of 267 angelonia samples submitted to Agdia Testing Services by commercial ornamental propagators for virus testing. Most samples were asymptomatic, although a few exhibited mild leaf mottle. It should be noted that the number of AnFBV-infected samples might not accurately reflect the actual number of commercially produced plants infected with AnFBV because most of the samples analyzed originated from virus elimination programs. The detection of natural AnFBV infection of verbena, phlox, and angelonia suggests that AnFBV may be more widespread in the ornamental industry than previously thought. References: (1) S. Adkins et al. Phytopathology (Abstr.) 95(suppl.):S2, 2005. (2) S. Adkins et al. Phytopathology 96:460, 2006. (3) G. P. Martelli and M. Russo. Online publication. ICTVdB-The Universal Virus Database. 00.074.0.02, 2004. (4) S. Winter et al. New Disease Reports. Vol 12. Brit. Soc. Plant Pathol. Online publication, 2005.

mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Gowrisankar Rajam ◽  
Maria Stella ◽  
Ellie Kim ◽  
Simon Paulos ◽  
Giuseppe Boccadifuoco ◽  
...  

ABSTRACT The meningococcal antigen typing system (MATS) is an enzyme-linked immunosorbent assay (ELISA)-based system that assesses the levels of expression and immune reactivity of the three recombinant MenB-4C antigens and, in conjunction with PorA variable 2 (VR2) sequencing, provides an estimate of the susceptibility of NmB isolates to killing by MenB-4C-induced antibodies. MATS assays or similar antigen phenotype analyses assume importance under conditions in which analyses of vaccine coverage predictions are not feasible with existing strategies, including large efficacy trials or functional antibody screening of an exhaustive strain panel. MATS screening of a panel of NmB U.S. isolates (n = 442) predicts high MenB-4C vaccine coverage in the United States. Neisseria meningitidis is the most common cause of bacterial meningitis in children and young adults worldwide. A 4-component vaccine against N. meningitidis serogroup B (MenB) disease (MenB-4C [Bexsero]; GSK) combining factor H binding protein (fHBP), neisserial heparin binding protein (NHBA), neisserial adhesin A (NadA), and PorA-containing outer membrane vesicles was recently approved for use in the United States and other countries worldwide. Because the public health impact of MenB-4C in the United States is unclear, we used the meningococcal antigen typing system (MATS) to assess the strain coverage in a panel of strains representative of serogroup B (NmB) disease in the United States. MATS data correlate with killing in the human complement serum bactericidal assay (hSBA) and predict the susceptibility of NmB strains to killing in the hSBA, the accepted correlate of protection for MenB-4C vaccine. A panel of 442 NmB United States clinical isolates (collected in 2000 to 2008) whose data were down weighted with respect to the Oregon outbreak was selected from the Active Bacterial Core Surveillance (ABCs; CDC, Atlanta, GA) laboratory. MATS results examined to determine strain coverage were linked to multilocus sequence typing and antigen sequence data. MATS predicted that 91% (95% confidence interval [CI95], 72% to 96%) of the NmB strains causing disease in the United States would be covered by the MenB-4C vaccine, with the estimated coverage ranging from 88% to 97% by year with no detectable temporal trend. More than half of the covered strains could be targeted by two or more antigens. NHBA conferred coverage to 83% (CI95, 45% to 93%) of the strains, followed by factor H-binding protein (fHbp), which conferred coverage to 53% (CI95, 46% to 57%); PorA, which conferred coverage to 5.9%; and NadA, which conferred coverage to 2.5% (CI95, 1.1% to 5.2%). Two major clonal complexes (CC32 and CC41/44) had 99% strain coverage. The most frequent MATS phenotypes (39%) were fHbp and NHBA double positives. MATS predicts over 90% MenB-4C strain coverage in the United States, and the prediction is stable in time and consistent among bacterial genotypes. IMPORTANCE The meningococcal antigen typing system (MATS) is an enzyme-linked immunosorbent assay (ELISA)-based system that assesses the levels of expression and immune reactivity of the three recombinant MenB-4C antigens and, in conjunction with PorA variable 2 (VR2) sequencing, provides an estimate of the susceptibility of NmB isolates to killing by MenB-4C-induced antibodies. MATS assays or similar antigen phenotype analyses assume importance under conditions in which analyses of vaccine coverage predictions are not feasible with existing strategies, including large efficacy trials or functional antibody screening of an exhaustive strain panel. MATS screening of a panel of NmB U.S. isolates (n = 442) predicts high MenB-4C vaccine coverage in the United States.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 528-528 ◽  
Author(s):  
C. J. Maroon-Lango ◽  
J. Hammond ◽  
S. Warnke ◽  
R. Li ◽  
R. Mock

Initial reports of the presence of Lolium latent virus (LLV) in Lolium perenne L. and L. multiflorum Lam. breeding clones in Germany, the Netherlands, France (2), and recently the United Kingdom (3,4; described as Ryegrass latent virus prior to identification as LLV) prompted us to evaluate clonally propagated Lolium plants from the United States. Four genetically distinct plants (viz., MF22, MF48, MF125, and MF132) that have been maintained clonally for 5 years from a Lolium perenne × L. multiflorum hybrid population established in the United States exhibited either no symptoms or mild chlorotic flecking that coalesced to form chlorotic to necrotic streaking on the leaves. All four clonal plants tested positive using reverse transcription-polymerase chain reaction (RT-PCR) with the Potexvirus group PCR test (Agdia, Inc., Elkhart, IN), whereas all clones but MF48 tested positive using the Potyvirus group PCR test (Agdia, Inc.). No amplicons were obtained when the same plants were tested for tobamovirus, carlavirus, and closterovirus using appropriate virus group-specific primers. Cloning and sequencing of the potexviral amplicons revealed very high sequence identity with the comparable region of LLV-UK (GenBank Accession No. DQ333886), whereas those of the potyviral amplicons (GenBank Accession Nos. DQ355837 and DQ355838) were nearly identical with the comparable region of Ryegrass mosaic virus (RGMV), a rymovirus first reported from the United States in 1957 (1). Using indirect enzyme-linked immunosorbent assay (ELISA), extracts from all four Lolium clonal propagations tested positive for LLV using the antiserum raised to LLV-Germany (courtesy of Dr. Huth), whereas the potyvirus-positive results from RT-PCR of the three clones were confirmed using indirect ELISA with the broad spectrum potyvirus monoclonal antibody, PTY-1. LLV from singly or dually infected Lolium clones was transmitted to Nicotiana benthamiana Domin. but not to N. tabacum L. by mechanical inoculation. LLV was purified from infected N. benthamiana. Similar sized flexuous rods were observed using electron microscopy in leaf dip samples from Lolium clones and aliquots of the virions purified from N. benthamiana. References: (1) G. W. Bruehl et al. Phytopathology 47:517, 1957. (2) W. Huth et al. Agronomie 15:508, 1995. (3) R. Li et al. Asian Conf. Plant Pathol. 2:89, 2005. (4) C. Maroon-Lango et al. Int. Congr. Virol. 13:63, 2005.


Plant Disease ◽  
1997 ◽  
Vol 81 (10) ◽  
pp. 1214-1214 ◽  
Author(s):  
J. R. Fisher ◽  
S. T. Nameth

Creeping bugleweed (Ajuga reptans L.) is a perennial ornamental commonly grown as a ground cover in temperate climates. Commercial samples of the A. reptans cultivars Royalty, var. Atropurpurea Bronze, Bronze Beauty, and Burgundy Glow showing mosaic and ringspot symptoms were tested for the presence of virus infection by direct antibody sandwich enzyme-linked immunosorbent assay (ELISA) and viral-associated double-stranded (ds) RNA analysis. Cucumber mosaic cucumovirus (CMV) was detected by ELISA and dsRNA analysis in symptomatic samples of all cultivars tested. ELISA values were considered positive if the absorbance values were twice the negative control. Negative control values were established with asymptomatic tissue of the cv. Bronze Beauty. Tobacco streak ilarvirus (TSV) was detected only by ELISA in symptomatic samples of all cultivars except Royalty. No dsRNA suggestive of TSV was detected. Alfalfa mosaic virus (AMV) was detected by ELISA and dsRNA analysis in symptomatic samples of all cultivars tested except Royalty and var. Atropurpurea Bronze. dsRNA analysis also indicated the presence of a low molecular weight, possible satellite (sat) RNA associated with all symptomatic and asymptomatic Royalty and var. Atropurpurea Bronze plants tested. Northern (RNA) blot analysis with a digoxigenin-labeled full-length clone of the (S) CARNA-5 (-) CMV satRNA (ATCC no. 45124) confirmed that the low molecular weight RNA associated with the Royalty and var. Atropurpurea Bronze cultivars was indeed CMV satRNA. Only AMV has been previously reported in A. reptans in the United States (1). This is the first report of CMV and its satRNA, as well as TSV, in A. reptans in the United States. Reference: (1) W. T. Schroeder and R. Provvidenti. Plant Dis. Rep. 56:285, 1972.


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 833-833 ◽  
Author(s):  
C. A. Baker ◽  
L. Breman ◽  
L. Jones

In the fall of 1998, the Division of Plant Industry (DPI) received vegetative propagations of Scutellaria longifolia (skullcap) with symptoms of foliar mosaic, chlorotic/necrotic ringspots, and wavy line patterns from a nursery in Manatee County. Flexuous particles approximately 500 nm long were found with electron microscopy. The plants tested positive for Papaya mosaic virus (PaMV) in an enzyme-linked immunosorbent assay (ELISA) test with antiserum to PaMV (Agdia, Elkhart, IN). However, in immunodiffusion tests (antiserum from D. Purcifull, University of Florida), this virus gave a reaction of partial identity indicating it was related but not identical to PaMV (1). The original infected plants were kept in a greenhouse. In January 2005, a specimen of Crossandra infundibuliformis (firecracker plant) with mosaic symptoms was submitted to the DPI from a nursery in Alachua County. Inclusions found with light microscopy and particles found with electron microscopy indicated that this plant was infected with a potexvirus. This was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) with primers designed to detect members of the virus family Potexviridae (3). These plants reacted positive to PaMV antiserum in ELISA and gave a reaction of partial identity to PaMV in immunodiffusion. A specimen of Portulaca grandiflora (moss rose) with distorted leaves found at a local retail store was also tested and gave the same results. Leaves from each of the three plant species were rubbed onto a set of indicator plants using Carborundum and potassium phosphate buffer. Total RNA was extracted from symptomatic indicator plants of Nicotiana benthamiana. RT-PCR (3) was performed, and PCR products were sequenced directly. Sequences of approximately 700 bp were obtained for all three plant species and showed 98% identity with each other. BLAST search results showed that these sequences were 93% identical to an Alternanthera mosaic virus (AltMV) sequence at the nucleotide level but only 76% identical to PaMV. The amino acid sequences were 98 and 82% identical to AltMV and PaMV, respectively. The PCR products of the virus from Scutellaria sp. were cloned, resequenced, and the sequence was entered into the GenBank (Accession No. DQ393785). The bioassay results matched those found for AltMV in Australia (2) and the northeastern United States (4), except that the Florida viruses infected Datura stramonium and Digitalis purpurea (foxglove). The virus associated with the symptoms of these three plants appears to be AltMV and not PaMV. AltMV has been found in ornamental plants in Australia, Italy, and the United States (Pennsylvania, Maryland, and now Florida). Since this virus is known to infect several plants asymptomatically and can be easily confused with PaMV serologically, it is likely that the distribution of this virus is much wider than is known at this time. References: (1) L. L. Breman. Plant Pathology Circular No. 396. Fla. Dept. Agric. Consum. Serv. DPI, 1999. (2) A. D. W. Geering and J. E. Thomas. Arch Virol 144:577, 1999. (3) A. Gibbs et al. J Virol Methods 74:67, 1998. (4) J. Hammond et al. Arch Virol. 151:477, 2006.


2002 ◽  
Vol 65 (12) ◽  
pp. 1988-1991 ◽  
Author(s):  
NEIL BIRMINGHAM ◽  
SIRINART THANESVORAKUL ◽  
VENU GANGUR

Food allergies affect 6 to 8% of children and 2% of adults in the United States. For reasons that are not clear, eight types of food account for a vast majority (~90%) of food-induced hypersensitivity reactions. In this study, C57Bl/6 mice were used to test the hypothesis that commonly allergenic foods are intrinsically more immunogenic than rarely allergenic or nonallergenic foods in allergy-susceptible hosts. Groups of mice (n = 4 to 5) were injected intraperitoneally with the protein extracts (plus alum as an adjuvant) from chicken eggs, peanuts, almonds, filberts-hazelnuts, walnuts, soybeans, and wheat (commonly allergenic foods) and coffee, sweet potatoes, carrots, white potatoes, cherries, lettuce, and spinach (rarely allergenic and non-allergenic foods). Primary and secondary immune responses (as measured by specific IgG1 antibody serum levels) were measured by an enzyme-linked immunosorbent assay. Proteins from peanuts, almonds, filberts, sweet potatoes, cherries, and spinach elicited robust primary and/or secondary immune responses. Proteins from eggs, walnuts, and lettuce elicited poor primary responses but significant secondary responses. In contrast, wheat, soybeans, coffee, carrots, and white potatoes elicited barely detectable to poor primary and secondary immune responses. The order of the immunogenicity levels of these foods in mice is as follows: almonds = filberts > spinach (Rubisco) > peanuts ≥ sweet potatoes > cherries > lettuce > walnuts > chicken eggs > carrots ≥ white potatoes > wheat = coffee = soybeans. In summary, these data demonstrate for the first time that: (i) foods vary widely with regard to their relative immunogenicity in allergy-susceptible hosts and (ii) intrinsic immunogenicity in mice does not distinguish commonly allergenic foods from rarely allergenic or nonallergenic foods.


This handbook is currently in development, with individual articles publishing online in advance of print publication. At this time, we cannot add information about unpublished articles in this handbook, however the table of contents will continue to grow as additional articles pass through the review process and are added to the site. Please note that the online publication date for this handbook is the date that the first article in the title was published online. For more information, please read the site FAQs.


2017 ◽  
Vol 29 (5) ◽  
pp. 704-706 ◽  
Author(s):  
Fernando V. Bauermann ◽  
Julia F. Ridpath ◽  
David A. Dargatz

Infection with bovine leukemia virus (BLV) results in economic loss because of reduced productivity, especially reduced milk production, and early culling. In the United States, studies in 1996, 1999, and 2007 showed BLV infection to be widespread, especially in dairy herds. We updated information herein on BLV seroprevalence in the United States, using samples submitted for testing and found negative for antibodies for Brucella by the Kentucky Eastern Regional Federal Brucellosis Laboratory. From October 2014 through August 2015, 2,000 samples from all regions of the contiguous United States were selected and tested for BLV antibodies by enzyme-linked immunosorbent assay. The overall percentage of samples positive for BLV antibody was 38.6%. Based on the animal’s origin, the percent positive by region ranged from 32.5% (Mountain West region) to 54.3% (Northeast region; p < 0.05). The positive rate for slaughter plants that processed mainly dairy animals (dairy plants; 47.6%) was higher than the positive rate at slaughter plants that processed mainly beef animals (beef plants; 33.6%; p < 0.05). The results suggest that BLV infection remains widespread in all regions of the United States and that rates may differ between beef and dairy cattle.


2009 ◽  
Vol 84 (2) ◽  
pp. 686-694 ◽  
Author(s):  
Dan Qiao ◽  
Bruce H. Janke ◽  
Subbiah Elankumaran

ABSTRACT Two novel paramyxoviruses, 81-19252 (Texas81) and 92-7783 (ISU92), isolated from the brains of pigs in the United States in the 1980s and 1990s, were characterized. The complete genome of Texas81 virus was 15,456 nucleotides (nt) in length, that of ISU92 was 15,480 nt, and both genomes consisted of six nonoverlapping genes, predicted to encode nine proteins, with conserved and complementary 3′ leader and 5′ trailer regions and conserved gene starts, gene stops, and trinucleotide intergenic sequences similar to those in paramyxoviruses. The corresponding genes from these two viruses were similar in length, except for the F genes, of which the ISU92 form had an additional 24-nt U-rich 3′ untranslated region. The P genes of swine viruses were predicted to produce V and D mRNAs by RNA editing (one to four G insertions in Texas81 and one to nine G insertions in ISU92) or C mRNA by alternative translation initiation. Sequence-specific features related to virus replication and host-specific amino acid signatures indicated that these viruses originated from bovine parainfluenzavirus 3 (bPIV3). Phylogenetic analysis of individual genes suggested that these viruses are novel members of the genus Respirovirus of the Paramyxovirinae subfamily and may be grouped into two subgenotypes of genotype A of bPIV3. Our comprehensive studies revealed that these swine PIV3 are variants of bPIV3 and were possibly transferred from cattle to pigs but failed to establish an active enzootic state. These two viruses were mildly pathogenic to conventionally reared pigs, and results from a limited enzyme-linked immunosorbent assay-based serosurvey of swine farms in Minnesota and Iowa in 2007 and 2008 were negative.


2010 ◽  
Vol 17 (10) ◽  
pp. 1552-1559 ◽  
Author(s):  
H. M. El Sahly ◽  
S. M. Patel ◽  
R. L. Atmar ◽  
T. A. Lanford ◽  
T. Dube ◽  
...  

ABSTRACT Erythrocyte binding antigen region II (EBA-175) is a conserved antigen of Plasmodium falciparum that is involved in binding of the parasite to the host's erythrocytes. We evaluated the safety and immunogenicity of a recombinant EBA-175 vaccine with aluminum phosphate adjuvant in healthy young adults living in the United States. Eighteen subjects/group received ascending doses (5, 20, 80, or 160 μg) of the vaccine at 0, 1, and 6 months; 8 subjects received placebo. Most of the injection site and systemic reactions were mild to moderate in intensity. After 2 or 3 doses of the vaccine at any concentration, antibody levels measured by enzyme-linked immunosorbent assay were significantly higher than those for the placebo group. Sera from subjects who received 3 doses of the vaccine at any concentration inhibited the growth of erythrocyte-stage P. falciparum at low levels compared to sera from placebo recipients or preimmune sera. In conclusion, the EBA-175 vaccine with adjuvant was safe and immunogenic in malaria-naïve subjects.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 526-526 ◽  
Author(s):  
S. Adkins ◽  
C. A. Baker

Desert rose (Adenium obesum (Forssk.) Roem. & Schult), a member of the family Apocynaceae, is characterized by fleshy stems and leaves and colorful flowers. This exotic ornamental, originally from southeast Africa, is propagated vegetatively and is a perennial in warm climates. Virus-like foliar symptoms, including chlorotic ring and line patterns, were observed in the fall of 2004 on one of five stock plants being maintained in a greenhouse in Fort Pierce, FL. Inclusion body morphology suggested the presence of a Tospovirus in the symptomatic plant, and Tomato spotted wilt virus (TSWV) was specifically identified in this plant using a commercially available double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA; Agdia, Elkhart, IN). TSWV was not detected in symptomless desert rose plants nor was Impatiens necrotic spot virus detected in any of the plants using DAS-ELISA. Graft transmission of TSWV to other desert rose plants was successful. Sequence analysis of a nucleocapsid (N) protein gene fragment amplified by reverse transcription-polymerase chain reaction (RT-PCR) with primers TSWV723 and TSWV722 (1) from total RNA of the symptomatic plant confirmed the diagnosis. Nucleotide and deduced amino acid sequences of a 579-bp region of the RT-PCR product were 95 to 99% and 95 to 100% identical, respectively, to TSWV N-gene sequences in GenBank. No product was amplified from symptomless plants. Since these 3-year-old plants were grown on-site from seed and only expressed symptoms 2 months following damage to the greenhouse by hurricanes Frances and Jeanne, it is likely that viruliferous thrips were introduced from local vegetable or ornamental production areas during or following the storms. To our knowledge, this is the first report of TSWV infection of desert rose in Florida, although TSWV was observed in this plant in Europe approximately 10 years ago (3,4). Because of the wide distribution of TSWV in the United States, the increasing popularity of desert rose, and the recent identification of Cucumber mosaic virus in this host (2), attention to sanitation and insect vector management is merited during desert rose propagation and production. References: (1) S. Adkins and E. N. Rosskopf. Plant Dis. 86:1310, 2002. (2) C. A. Baker et al. Plant Dis. 87:1007, 2003. (3) J. Mertelik et al. Acta Hortic. 432:368, 1996. (4) J. Th. J. Verhoeven and J. W. Roenhorst. Acta Hortic. 377:175, 1994.


Sign in / Sign up

Export Citation Format

Share Document