scholarly journals First Report of Bean pod mottle virus in Soybean in Canada

Plant Disease ◽  
2002 ◽  
Vol 86 (3) ◽  
pp. 330-330 ◽  
Author(s):  
R. Michelutti ◽  
J. C. Tu ◽  
D. W. A. Hunt ◽  
D. Gagnier ◽  
T. R. Anderson ◽  
...  

In 2001, soybean fields were surveyed to determine the incidence of viruses because soybean aphids (Aphis glycines Matsamura), known to transmit Soybean mosaic virus (SMV) (2), were found in Ontario. In addition, bean leaf beetle (Cerotoma trifurcata Forster) was found during 2000 to be contaminated with Bean pod mottle virus (BPMV), although soybean plants, on which the beetles were feeding, tested negative (3). In the current survey, young soybean leaves were selected at random in July and August from 20 plants per site at growth stages R4 to R5 (1) from 415 sites representing the entire soybean-producing area in Ontario. Samples were maintained under cool conditions until received at the laboratory, where they were promptly processed. A combined sub-sample was obtained from the 20 plants per site. The 415 sub-samples were tested for SMV, BPMV, Tobacco ringspot virus (TRSV), and Tobacco streak virus (TSV) using polyclonal antibody kits for double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) (Agdia Inc., Elkart, IN). The ELISA plates were read with a plate reader (MRX, Dynex Technologies Inc., Chantilly, VA), and results were analyzed using ELISA software (Leading Edge Research, Merrickville, Ontario) and compared positive and negative controls (Agdia). TRSV was detected in one sample from Essex County and another sample from Middlesex County. SMV, BPMV, and TSV were not found in commercial soybean fields. However, SMV and BPMV were found in samples originating from two soybean breeding nurseries, one in Essex County and one in Kent County. Seedlings of soybean cv. Williams 82 were inoculated in the greenhouse with sap from leaf samples that tested positive for BPMV. Leaves of plants that developed mosaic symptoms were retested using ELISA and confirmed to be positive for BPMV. SMV and TRSV have been found previously in commercial soybean fields in Ontario (4). To our knowledge, this is the first report of BPMV on soybean plants in Canada. References: (1) W. R. Fehr et al. Merr. Crop. Sci. 11:929, 1971. (2) J. H. Hill et al. Plant Dis. 85:561, 2001. (3) A. U. Tenuta. Crop Pest. 5 (11):8, 2000. (4) J. C. Tu. Can. J. Plant Sci. 66:491, 1986.

Plant Disease ◽  
2001 ◽  
Vol 85 (9) ◽  
pp. 1029-1029 ◽  
Author(s):  
A. E. Dorrance ◽  
D. T. Gordon ◽  
A. F. Schmitthenner ◽  
C. R. Grau

Soybean has been increasing in importance and acreage over wheat and corn for the past decade in Ohio and is now planted on 4.5 million acres. Previous surveys in Ohio of viruses infecting soybean failed to identify Bean pod mottle virus (BPMV) and soybean virus diseases have rarely caused economic losses (1). During 1999, producers in Ohio noticed virus-like symptoms in soybeans in a few isolated locations. Soybeans with green stems, undersized and “turned up pods” were collected from Union, Wood and Wyandot Counties during October 1999 and soybeans with crinkled, mottled leaves were collected in Henry, Licking and Sandusky during August 2000. Five to six plants were collected from a single field from each county each year. In 1999, samples were sent to the University of Wisconsin-Madison, where one symptomatic leaflet/sample was ground in 3 ml of chilled phosphate buffered saline (pH 7.2). Leaf sap was placed in 1.5-ml centrifuge tubes and stored at 4°C for 24 h. Sap was assayed for the presence of BPMV using an alkaline phosphatase-labeled double-antibody sandwich enzyme-linked immunosorbent assay (DAS ELISA) for BPMV (AgDia Inc., Elkhart, IN). All samples tested were positive for BPMV. Samples collected in 1999 were also maintained at The Ohio State University in Harosoy soybean and in 2000 assayed serologically along with samples collected in 2000 for BPMV and Soybean mosaic virus (SMV) by ELISA and for Tobacco ringspot virus (TRSV) and Bean yellow mosaic virus (BYMV) by a host-range symptom assay; SMV, BYMV and TRSV had been identified from soybean in previous Ohio surveys. Soybean leaf samples were assayed using F(ab′)2-Protein A ELISA with antiserum prepared in 1968 to a southern U.S. isolate of BPMV and to an Ohio isolate of Soybean mosaic virus (SMV) prepared in 1967, both stored at −20°C. Diseased and non-symptomatic soybean leaf samples were ground in 4 ml 0.025M Tris pH 8.0, 0.015M NaCl and 0.05% Tween 20. Extracts were tested for BPMV and SMV by ELISA following a protocol described elsewhere (2). All of the samples collected during 1999 and maintained in the greenhouse tested positive for both BPMV and SMV while all of those samples collected during 2000 tested positive for BPMV and negative for SMV. Host-range symptom assays were conducted with leaf extracts prepared by grinding 1 g tissue:10 ml potassium phosphate buffer, pH 7.0. Extracts were inoculated by leaf rub method to Harosoy soybean, Phaseolus vulgaris cvs. Red Kidney and Bountiful, cowpea, and cucumber. The host-range symptom assays of both the 1999 and 2000 samples were negative for TRSV and BYMV; cowpea failed to express local lesions and cucumber systemic mosaic characteristic of TRSV infection and the two Phaseolus cultivars the yellow mosaic characteristic of BYMV infection. These results indicate that both BPMV and SMV were present in the samples in 1999 but only BPMV in 2000. The distribution of BPMV within Ohio and economic impact of this virus have yet to be determined. This is the first report of BPMV in Ohio. References: (1) A. F. Schmitthenner and D. T. Gordon. Phytopathology 59:1048, 1969. (2) R. Louie et al. Plant Dis. 84:1133–1139, 2000.


Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 719-726 ◽  
Author(s):  
Amy D. Ziems ◽  
Loren J. Giesler ◽  
George L. Graef ◽  
Margaret G. Redinbaugh ◽  
Jean L. Vacha ◽  
...  

Bean pod mottle virus (BPMV) has become increasingly common in soybean throughout the north-central region of the United States. Yield loss assessments on southern soybean germplasm have reported reductions ranging from 3 to 52%. Currently, no soybean cultivars have been identified with resistance to BPMV. The objective of this study was to determine the impact of BPMV infection on soybean cultivars representing a broad range of northern soybean germ-plasm by comparing inoculated and noninoculated soybean plants in paired row studies. In all, 30 and 24 cultivars were evaluated in Nebraska (NE) in which soybean plants were inoculated at the V3 to V4 growth stage. Eleven cultivars from public and breeding lines were inoculated at the VC and R5 to R6 growth stages in Ohio (OH). Disease severity, yield, and percent seed coat mottling were assessed at both locations, whereas protein and oil content also were assessed at NE. Yield and percent seed coat mottling was significantly reduced following inoculation at the VC (OH) and V3 to V4 (NE) growth stages. In addition, seed oil and protein composition were impacted in 1 of the 2 years of the study. This study demonstrates that substantial yield losses can occur in soybean due to BPMV infection. In addition, protein and oil may be affected depending on the environment during the production season.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1333-1336 ◽  
Author(s):  
H. A. Hobbs ◽  
G. L. Hartman ◽  
Y. Wang ◽  
C. B. Hill ◽  
R. L. Bernard ◽  
...  

Soybean seed coat mottling often has been a problematic symptom for soybean growers and the soybean industry. The percentages of seed in eight soybean lines with seed coat mottling were evaluated at harvest after inoculating plants during the growing season with Bean pod mottle virus (BPMV), Soybean mosaic virus (SMV), and both viruses inside an insect-proof cage in the field. Results from experiments conducted over 2 years indicated that plants infected with BPMV and SMV, alone or in combination, produced seed coat mottling, whereas noninoculated plants produced little or no mottled seed. BPMV and SMV inoculated on the same plants did not always result in higher percentages of mottled seed compared with BPMV or SMV alone. There was significant virus, line, and virus-line interaction for seed coat mottling. The non-seed-coat-mottling gene (Im) in Williams isoline L77-5632 provided limited, if any, protection against mottling caused by SMV and none against BPMV. The Peanut mottle virus resistance gene Rpv1 in Williams isoline L85-2308 did not give any protection against mottling caused by SMV, whereas the SMV resistance gene Rsv1 in Williams isoline L78-379 and the resistance gene or genes in the small-seeded line L97-946 gave high levels of protection against mottling caused by SMV. The correlations (r = 0.77 for year 2000 and r = 0.89 for year 2001) between virus infection of the parent plant and seed coat mottling were significant (P = 0.01), indicating that virus infection of plants caused seed coat mottling.


Plant Disease ◽  
2005 ◽  
Vol 89 (7) ◽  
pp. 775-775 ◽  
Author(s):  
N. Shahraeen ◽  
T. Ghotbi ◽  
M. Salati ◽  
A. Sahandi

Soybean (Glycine max (L.) Merr.) has been increasing in importance and acreage for the past 5 years in Iran and is now planted on approximately 108,000 ha. Previous surveys in Iran of viruses infecting soybean failed to identify Bean pod mottle virus (BPMV), but the incidence of other common viruses of soybean in the field has been reported (1). During October 2004, symptoms characteristic of those caused by BPMV including mosaic, puckering of trifoliate leaves, and delayed maturity of stems or green stems were observed in soybean fields in the Takhti Mahaleh, Versen, and Hashemabad areas located in the Gorgan Province. Sporadic incidence of plants infected with BPMV has been usually of minor importance to growers. Symptoms were often overlooked or considered to be physiological disorders. A visual assessment was made to determine incidence of green stem in the commonly grown soybean cv. Sahar. Forty soybean plants showing symptoms of crinkling, mottling, green stem, and retaining green leaves were sampled by collecting one trifoliate leaf near the top of the plant. All samples were tested in parallel for BPMV using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). BPMV was detected in 40% of the samples. Seven of the samples shown to be infected with BPMV using DAS-ELISA were mechanically (2) transferred to soybean seedlings in the greenhouse. These plants developed systemic mottle symptoms typical of those caused by BPMV and tested positive for BPMV using DAS-ELISA. The distribution of BPMV within soybean-growing regions, exploration of potential virus reservoirs, and economic impact of this virus have yet to be determined. There is no published report on the presence of potential BPMV vectors including the bean leaf beetle (Cerotoma trifurcata) from soybean fields in Iran. To our knowledge, this is the first report of BPMV in Iran. References: (1) A. R. Golnaraghi et al. Plant Dis.88:1069, 2004. (2) R. Louie et al. Plant Dis.84:1133, 2000.


Plant Disease ◽  
2001 ◽  
Vol 85 (11) ◽  
pp. 1210-1210 ◽  
Author(s):  
J. Aramburu

During spring 2001, plants of different tomato (Lycopersicon esculentum) cultivars grown in several commercial fields in the eastern Catalonia Region of Spain had fruit with brown patches and young leaves with rings and a bright necrotic mosaic that progressed to stem necrosis of the apex, which might die and later develop new symptomless shoots. The symptoms were similar to those of Cucumber mosaic virus (CMV) and Tomato spotted wilt virus (TSWV). Sap of tomato sample R1 (in buffered saline [0.02 M sodium phosphate, 0.15 M NaCl at pH 7.2, containing 0.2% 2-mercaptoethanol]) was infective to Cucumis sativus (local necrosis), tomato cv. Marmande (systemic infection consisting of chlorotic local lesions and necrotic mosaic), Nicotiana clevelandii and N. benthamiana (chlorosis and rosetting), and Chenopodium quinoa (chlorotic local lesions, systemic mottle, and leaf distortion). The sap was not infective to N. glutinosa, N. tabacum cv. Xanthi, Datura stramonium, or Gomphrena globosa. The host range data indicated that the infective agent in sample R1 could be Parietaria mottle virus (PMoV) (1). Symptomatic plants inoculated in a greenhouse with the R1 isolate and symptomatic from tomato plants from the field were analyzed by indirect enzyme-linked immunosorbent assay (ELISA) and had minimum ELISA values at least 10-fold higher than healthy controls, using a polyclonal antiserum (provided by P. Roggero) of a tomato strain of PMoV denoted tomato virus 1 (2). The R1 isolate of PMoV was negative in ELISA when analyzed with commercial antisera to TSWV, CMV, Tomato mosaic virus, Tomato bushy stunt virus, Potato Y virus, Tobacco etch virus, Pelargonium zonate spot virus, and Tobacco streak virus. References: (1) P. Caciagli et al. Plant Pathol. 38:577, 1989. (2) P. Roggero et al. J. Plant Pathol. 82:159, 2000.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1069-1074 ◽  
Author(s):  
A. R. Golnaraghi ◽  
N. Shahraeen ◽  
R. Pourrahim ◽  
Sh. Farzadfar ◽  
A. Ghasemi

A survey was conducted to determine the incidence of Alfalfa mosaic virus (AlMV), Bean common mosaic virus (BCMV), Bean yellow mosaic virus (BYMV), Blackeye cowpea mosaic virus (BlCMV), Cucumber mosaic virus (CMV), Pea enation mosaic virus (PEMV), Peanut mottle virus (PeMoV), Soybean mosaic virus (SMV), Tobacco mosaic virus (TMV), Tobacco ringspot virus (TRSV), Tobacco streak virus (TSV), Tomato ringspot virus (ToRSV), and Tomato spotted wilt virus (TSWV) on soybean (Glycine max) in Iran. Totals of 3,110 random and 1,225 symptomatic leaf samples were collected during the summers of 1999 and 2000 in five provinces of Iran, where commercial soybean is grown, and tested by enzyme-linked immunosorbent assay (ELISA) using specific polyclonal antibodies. Serological diagnoses were confirmed by electron microscopy and host range studies. The highest virus incidence among the surveyed provinces was recorded in Mazandaran (18.6%), followed by Golestan (15.7%), Khuzestan (14.2%), Ardabil (13.9%), and Lorestan (13.5%). Incidence of viruses in decreasing order was SMV (13.3%), TSWV (5.4%), TRSV (4.2%), TSV (4.1%), PEMV (2.9%), BYMV (2.2%), ToRSV (2.1%), AlMV (1.3%), BCMV (0.8%), and CMV (0.6%). Additionally, 1.5% of collected leaf samples had positive reactions in ELISA with antiserum to TMV, indicating the possible infection of soybeans in Iran with a Tobamovirus that is related serologically to TMV. Of 195 leaves from plants showing soybean pod set failure syndrome (PSF) in Mazandaran and Lorestan, only 14 (7.2%) samples had viral infection. No correlation was observed between PSF and presence of the 13 viruses tested, suggesting the involvement of other viruses or factors in this syndrome. To investigate the presence of seed-borne viruses, including SMV, TRSV, ToRSV, and TSV, 7,830 soybean seeds were collected randomly at harvesting time from the major sites of soybean seed production located in Mazandaran and Golestan provinces. According to ELISA analyses of germinated seedlings, 7.1 and 8.9% of the seed samples from Golestan and Mazandaran provinces, respectively, transmitted either SMV, TRSV, ToRSV, or TSV through seed. We also showed that SMV and other seed transmissible viruses, as well as TSWV, usually are the most prevalent viruses in soybean fields in Iran. In this survey, natural occurrence of AlMV, BCMV, BlCMV, BYMV, CMV, PEMV, PeMoV, and TSWV was reported for the first time on soybeans in Iran.


Plant Disease ◽  
2010 ◽  
Vol 94 (2) ◽  
pp. 265-270 ◽  
Author(s):  
Margaret G. Redinbaugh ◽  
Julio E. Molineros ◽  
Jean Vacha ◽  
Sue Ann Berry ◽  
Ronald B. Hammond ◽  
...  

Bean pod mottle virus (BPMV) infection reduces yield and seed quality in soybean. To test the hypothesis that virus incidence and movement within plots would be reduced in soybean with resistance to feeding by the virus' bean leaf beetle (Cerotoma trifurcata) vector, BPMV spread was evaluated in five soybean genotypes at two inoculum levels over 2 years at two locations in Ohio. Soybean genotypes included two insect-feeding-susceptible genotypes (Williams 82 and Resnik), two insect-feeding-resistant, semidwarf genotypes (HC95-15 and HC95-24), and an insect-feeding-susceptible, semidwarf genotype (Troll). BPMV incidence was assessed in individual plants at growth stages R5/R6 and R7/R8 using enzyme-linked immunosorbent assay. Beetle feeding was visually assessed in 2004. Data for infection of individual plants were analyzed using a generalized linear mixed model, with a binomial distribution and logit-link. Within plots, BPMV incidence was highest in Resnik and Williams 82 and significantly lower in Troll. Incidence in HC95-15 was not significantly different than in Williams 82 and Resnik but incidence in HC95-24 was lower than in Resnik. BPMV incidence was also significantly (P < 0.05) affected by year, location, inoculum level and sampling date, with increasing incidence over time and higher incidence at the higher inoculum level. Beetle feeding damage was affected by the interaction of location–genotype. Significant spatial aggregation of infected plants was found for most plots but aggregation was independent of host genotype and inoculum level. Although the results indicate that BPMV infection varied by genotype, they do not support the hypothesis that insect-feeding resistance is sufficient to reduce the incidence and spread of BPMV.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1396-1396 ◽  
Author(s):  
S. Chander Rao ◽  
R. D. V. J. Prasada Rao ◽  
V. Manoj Kumar ◽  
Divya S. Raman ◽  
M. A. Raoof ◽  
...  

Safflower, Carthamus tinctorius L. (Asteraceae), is extensively cultivated in India, China, and other parts of Asia for edible oil, dyeing agent, and its medicinal value. In 2003, safflower entry (NARI-6) in the All-India Coordinated Research Project on Oilseeds (Safflower) grown in the experimental fields of M/s Syngenta India Ltd., Aurangabad (Maharashtra State, India) exhibited symptoms of veinal and leaf necrosis, necrotic streaks on the stem, necrosis of the terminal bud, and ultimately plant death. The disease was attributed to Tobacco streak virus (TSV) because sunflower growing adjacent to safflower showed similar symptoms caused by TSV (1). Mechanical inoculations of sap from symptomatic safflower leaves caused typical symptoms of TSV (local, irregular, necrotic rings, veinal necrosis, and systemic veinal necrosis) on Vigna unguiculata (L.) Walp. cv. C-152 and Phaseolus vulgaris (L.) cv. Topcrop, and symptoms of local, necrotic lesions, veinal necrosis, and systemic necrosis of leaf and growing bud on Arachis hypogaea L. cv. JL-24. Sap-inoculated safflower cv. Manjeera showed chlorotic and necrotic local lesions followed by systemic leaf necrosis, leading to necrosis and death of the terminal bud. Safflower cvs. A-1, BIP-2, Co-1, and Bheema (10 plants of each cultivar) inoculated with sap from safflower plants showing typical TSV symptoms did not show any visible symptoms except stunting, but six to nine plants of each cultivar tested positive for TSV using enzyme-linked immunosorbent assay (ELISA) tests. In direct antigen coating-ELISA, the virus reacted positively with antiserum produced to an isolate of TSV from peanut (2) and to antiserum to TSV (ATCC-PVAS 276 for Datura stramonium), but did not react to peanut bud necrosis tospovirus antiserum. Examination of leaf extracts using leaf-dips and immunosorbent electron microscopy with the antiserum of TSV-peanut isolate showed isometric particles resembling those in the genus Ilarvirus. To our knowledge, this is the first report of an isolate of Tobacco streak virus infecting safflower. References: (1) R. D. V. J. Prasada Rao et al. J. Oilseeds Res. 17:400, 2000. (2) A. S. Reddy et al. Plant Dis. 86:173, 2002.


Plant Disease ◽  
2005 ◽  
Vol 89 (1) ◽  
pp. 108-108 ◽  
Author(s):  
E. J. Sikora ◽  
J. F. Murphy

During October 2003, soybean (Glycine max (L.) Merr.) plants showing symptoms of delayed maturity of stems, or green stem, were observed in a soybean cultivar trial on Dee River Ranch in Pickens County, Alabama. Symptoms were characteristic of those caused by Bean pod mottle virus (BPMV). BPMV infections have been identified in other southern states, including Arkansas, Louisiana, and neighboring Mississippi, but had not yet been identified in Alabama (1,2,3). In this study, a cultivar trial was established as a nonreplicated strip test to evaluate the performance of nongenetically modified soybean cultivars in high-pH soils. The trial consisted of 12 maturity group V cultivars planted side by side in 24-row plots approximately 1 km long. The cultivars consisted of Anand, Asgrow 5547, Asgrow 5944, Delta King 5995, Deltapine 4748, Deltapine 5110, Deltapine 5989, Essex, Hutcheson, Pioneer 9594, Pioneer 9597, and USG5601T. During the season, a known vector of BPMV, the bean leaf beetle (Cerotoma trifurcate Forster), was identified in the plots (4). On 10 October, the majority of plants in the trial had senesced; however, it was observed that plants of 6 of the 12 cultivars were showing symptoms of green stem typical of BPMV infection. A visual assessment was taken to determine incidence of green stem for Asgrow 5547, Delta King 5995, Deltapine 5110, Deltapine 5989, Pioneer 9594, and USG5601T. Incidence between 1 and 5% was observed for Delta King 5995, Deltapine 5989, and Pioneer 9594. Incidence of less than 1% was observed for Asgrow 5547, Deltapine 5110, and USG5601T. Twenty soybean plants showing symptoms of green stem and retaining green leaves were sampled from each of the six cultivars by collecting one trifoliate leaf near the top of the plant. All samples were tested for BPMV using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) according to the manufacturer's instructions (Agdia, Inc., Elkart, IN). BPMV was detected in 30% of Deltapine 5989, 10% of Delta King 5995, and 45% of Pioneer 9594 plants. BPMV was not detected in Asgrow 5547, Deltapine 5110, and USG5601T. Ten of the samples shown to be infected with BPMV using DAS-ELISA were mechanically transferred to soybean seedlings in the greenhouse. These plants developed systemic mottle symptoms typical of those caused by BPMV and tested positive for the virus BPMV using DAS-ELISA. To our knowledge, this is the first report of BPMV in Alabama. References: (1) N. S. Horn et al. LA. Agric. 13:12, 1970. (2) H. N. Pitre et al. Plant Dis. Rep. 63:419, 1979. (3) J. P. Ross. Plant Dis. Rep. 47:1049, 1963. (4) H. J. Walters. (Abstr.) Phytopathology 48:346, 1958.


2017 ◽  
Vol 18 (3) ◽  
pp. 166-166
Author(s):  
Edward J. Sikora ◽  
John F. Murphy ◽  
Kassie N. Conner

This study focuses on Bean pod mottle virus (BPMV) and Soybean mosaic virus (SMV) incidence over time relative to stages of plant growth in selected fields in Alabama. Five commercial soybean fields in west-central Alabama were surveyed for BPMV and SMV in 2010-2012 and 2014. Incidence of BPMV was typically highest at crop maturity. Incidence of 10% or higher was recorded at full bloom in at least one field in each year of the study, but incidence did not exceed 23% at bloom in any field with one exception. SMV was not detected at high levels during this study and incidence above 10% at full bloom was recorded for only one field. Results from this study, combined with observations from a previous statewide survey, indicate that BPMV is the most common virus disease of soybeans in Alabama. BPMV has the potential to cause yield loss in years when bean leaf beetles, its most important vector, are present at high levels early in the season when infection of soybean prior to flowering is possible. Results also suggest that SMV incidence in soybean in Alabama is low in most years and the disease might not pose a significant threat to soybean production at this time, especially in the absence of high populations of soybean aphids in the state.


Sign in / Sign up

Export Citation Format

Share Document