scholarly journals Identification of Resistance to New Virulent Races of Rust in Sunflowers and Validation of DNA Markers in the Gene Pool

2011 ◽  
Vol 101 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Lili Qi ◽  
Tom Gulya ◽  
Gerald J. Seiler ◽  
Brent S. Hulke ◽  
Brady A. Vick

Sunflower rust, caused by Puccinia helianthi, is a prevalent disease in many countries throughout the world. The U.S. Department of Agriculture (USDA)-Agricultural Research Service, Sunflower Research Unit has released rust resistant breeding materials for several decades. However, constantly coevolving rust populations have formed new virulent races to which current hybrids have little resistance. The objectives of this study were to identify resistance to race 336, the predominant race in North America, and to race 777, the most virulent race currently known, and to validate molecular markers known to be linked to rust resistance genes in the sunflower gene pool. A total of 104 entries, including 66 released USDA inbred lines, 14 USDA interspecific germplasm lines, and 24 foreign germplasms, all developed specifically for rust resistance, were tested for their reaction to races 336 and 777. Only 13 of the 104 entries tested were resistant to both races, whereas another six were resistant only to race 336. The interspecific germplasm line, Rf ANN-1742, was resistant to both races and was identified as a new rust resistance source. A selection of 24 lines including 19 lines resistant to races 777 and/or 336 was screened with DNA markers linked to rust resistance genes R1, R2, R4u, and R5. The results indicated that the existing resistant lines are diverse in rust resistance genes. Durable genetic resistance through gene pyramiding will be effective for the control of rust.

2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 593-595
Author(s):  
M. Gál ◽  
L. Szunics ◽  
G. Vida ◽  
Lu. Szunics ◽  
O. Veisz ◽  
...  

The efficiency of leaf rust resistance genes in adult plants was studied on near-isogenic lines of Thatcher carrying known leaf rust resistance genes in the artificially inoculated leaf rust nursery of the Agricultural Research Institute of the Hungarian Academy of Sciences in Martonvásár over a five-year period (1997–2001). Eight of the wheat lines tested (Lr9, Lr19, Lr23, Lr24, Lr25, Lr29, Lr35, Lr37) exhibited little or no infection. Lines carrying genes Lr13, Lr44 and LrB were resistant in two years and those carrying Lr34, Lr38 and LrW in three years, after which they suffered moderate or heavy infection. Three lines (Lr12, Lr17, Lr32) proved to be moderately resistant. The majority of the wheat lines tested became heavily infected.


Plant Disease ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1302-1312 ◽  
Author(s):  
Z. F. Li ◽  
X. C. Xia ◽  
X. C. Zhou ◽  
Y. C. Niu ◽  
Z. H. He ◽  
...  

Identification of seedling and slow stripe rust resistance genes is important for gene pyramiding, gene deployment, and developing slow-rusting wheat cultivars to control the disease. A total of 98 Chinese lines were inoculated with 26 pathotypes of Puccinia striiformis f. sp. tritici for postulation of stripe rust resistance genes effective at the seedling stage. A total of 135 wheat lines were planted at two locations to characterize their slow rusting responses to stripe rust in the 2003-2004 and 2004-2005 cropping seasons. Genes Yr2, Yr3a, Yr4a, Yr6, Yr7, Yr9, Yr26, Yr27, and YrSD, either singly or in combinations, were postulated in 72 lines, whereas known resistance genes were not identified in the other 26 accessions. The resistance genes Yr9 and Yr26 were found in 42 and 19 accessions, respectively. Yr3a and Yr4a were detected in two lines, and four lines may contain Yr6. Three lines were postulated to possess YrSD, one carried Yr27, and one may possess Yr7. Thirty-three lines showed slow stripe rusting resistance at two locations in both seasons.


2016 ◽  
Vol 4 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Resham Babu Amgai ◽  
Sumitra Pantha ◽  
Madan Raj Bhatta

Barley (Hordeum vulagare L) is the major crop for the people living in the high hills and mountainous region of Nepal. Leaf rust (caused by Puccinia hordei) is one of the major production threats for barley cultivation. A lot of variation can be observed on Nepalese barley accessions with respect to leaf rust resistance characteristics. Two hundred and forty one barley accessions were screened for leaf rust resistance characteristics on heading stage at Khumaltar, Lalitpur, Nepal. Among them, one hundred and nine Nepalese barley accessions showing promising for disease resistance were screened using six SSR markers linked to leaf rust resistance genes. Bonus and Local Jau was used as the resistant and susceptible check respectively. Leaf rust resistance genes Rph1, Rph2, Rph3, Rph7, QBLR-P and QTL on chromosome 5HS were detected on Nepalese barley accessions using respective SSR markers. Eight Nepalese barley accessions showed presence of three and more leaf rust resistant genes. The poor relationship between the field disease resistance and molecular markers linked with specific leaf rust resistance gene proved that Nepalese barley gene pool contains other leaf resistance genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Achla Sharma ◽  
Puja Srivastava ◽  
G. S. Mavi ◽  
Satinder Kaur ◽  
Jaspal Kaur ◽  
...  

Wheat variety PBW343, released in India in 1995, became the most widely grown cultivar in the country by the year 2000 owing to its wide adaptability and yield potential. It initially succumbed to leaf rust, and resistance genes Lr24 and Lr28 were transferred to PBW343. After an unbroken reign of about 10 years, the virulence against gene Yr27 made PBW343 susceptible to stripe rust. Owing to its wide adaptability and yield potential, PBW343 became the prime target for marker-assisted introgression of stripe rust resistance genes. The leaf rust-resistant versions formed the base for pyramiding stripe rust resistance genes Yr5, Yr10, Yr15, Yr17, and Yr70, in different introgression programs. Advanced breeding lines with different gene combinations, PBW665, PBW683, PBW698, and PBW703 were tested in national trials but could not be released as varieties. The genes from alien segments, Aegilops ventricosa (Lr37/Yr17/Sr38) and Aegilops umbellulata (Lr76/Yr70), were later pyramided in PBW343. Modified marker-assisted backcross breeding was performed, and 81.57% of the genetic background was recovered in one of the selected derivative lines, PBW723. This line was evaluated in coordinated national trials and was released for cultivation under timely sown irrigated conditions in the North Western Plain Zone of India. PBW723 yields an average of 58.0 qtl/ha in Punjab with high potential yields. The genes incorporated are susceptible to stripe rust individually, but PBW723 with both genes showed enhanced resistance. Three years post-release, PBW723 occupies approximately 8–9% of the cultivated area in the Punjab state. A regular inflow of diverse resistant genes, their rapid mobilization to most productive backgrounds, and keeping a close eye on pathogen evolution is essential to protect the overall progress for productivity and resistance in wheat breeding, thus helping breeders to keep pace with pathogen evolution.


Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Lili Qi ◽  
Guojia Ma

Rust caused by the fungus Puccinia helianthi and downy mildew (DM) caused by the obligate pathogen Plasmopara halstedii are two of the most globally important sunflower diseases. Resistance to rust and DM is controlled by race-specific single dominant genes. The present study aimed at pyramiding rust resistance genes combined with a DM resistance gene, using molecular markers. Four rust resistant lines, HA-R3 (carrying the R4 gene), HA-R2 (R5), HA-R8 (R15), and RHA 397 (R13b), were each crossed with a common line, RHA 464, carrying a rust gene R12 and a DM gene PlArg. An additional cross was made between HA-R8 and RHA 397. Co-dominant simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers linked to the target genes were used to discriminate between homozygotes and heterozygotes in F2 populations. Five pyramids with different combinations of rust resistance genes were selected in the homozygous condition through marker-assisted selection, and three of them were combined with a DM resistance gene PlArg: R4/R12/PlArg, R5/R12/PlArg, R13b/R12/PlArg, R15/R12, and R13b/R15. The pyramiding lines with the stacking of two rust and one DM genes were resistant to all known races of North American sunflower rust and all known races of the pathogen causing DM, potentially providing multiple and durable resistance to both rust and DM. A cluster of 12 SNP markers spanning a region of 34.5 Mb on chromosome 1, which co-segregate with PlArg, were tested in four populations. Use of those markers, located in a recombination suppressed region in marker selection, is discussed.


2011 ◽  
Vol 39 (No. 4) ◽  
pp. 127-129 ◽  
Author(s):  
Ž. Gregáňová ◽  
J. Kraic ◽  
Z. Gálová

Leaf rust caused by Puccinia triticina belongs to the most important wheat diseases in Europe, including Slovakia. Winter wheat varieties registered in Slovakia have been tested with already developed STS (Lr9, Lr24), SCAR (Lr35) and SSR (Lr13) markers which are linked to the mentioned leaf rust resistance genes. Each of the four DNA markers linked to the individual resistance gene can be detected safely, easily and relatively fast by using the PCR reaction. This is very important for marker assisted selection (MAS) for the incorporation of the Lr9, Lr24 a Lr35 genes into chosen wheat genotypes with good bread-making quality or for the characterisation of wheat genetic resources (Lr13 gene).        


2014 ◽  
Vol 10 (6) ◽  
pp. 371-377 ◽  
Author(s):  
Asma Haque ◽  
◽  
Tayyaba Shaheen ◽  
Tahsin Gulzar ◽  
Mahmood ur Rahman ◽  
...  

2010 ◽  
Vol 36 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Hong ZHANG ◽  
Zhi-Long REN ◽  
Yin-Gang HU ◽  
Chang-You WANG ◽  
Wan-Quan JI

Sign in / Sign up

Export Citation Format

Share Document