scholarly journals Molecular Characterization of International Collections of the Wheat Stripe Rust Pathogen Puccinia striiformis f. sp. tritici Reveals High Diversity and Intercontinental Migration

2020 ◽  
Vol 110 (4) ◽  
pp. 933-942 ◽  
Author(s):  
Dipak Sharma-Poudyal ◽  
Qing Bai ◽  
Anmin Wan ◽  
Meinan Wang ◽  
Deven See ◽  
...  

Puccinia striiformis f. sp. tritici causes stripe rust (yellow rust), one of the most important wheat diseases worldwide. To understand the genetic variation of the pathogen in a global scale, 283 P. striiformis f. sp. tritici isolates collected from 16 countries in eight geographic regions were genotyped using 24 codominant simple sequence repeat markers. The overall collection had a high level of genetic diversity, and the diversity levels in the Asian populations were generally higher than those of the other regions. Heterozygosity of isolates ranged from 0 to 75%, with an average of 46%. Mean heterozygosity in individual countries ranged from 34 to 59%. A total of 265 multilocus genotypes (MLGs) were detected, which were classified into eight molecular groups. Some of the molecular groups were present in all geographic regions. Moreover, many isolates from different regions were found to be identical or very closely related MLGs. Analysis of molecular variance revealed high variation within countries and intermediate variation between countries, but it revealed low and insignificant variation among geographic regions. Pairwise comparisons of regional populations detected considerable effective migrants and only low to moderate levels of differentiation. The molecular genotypes had a moderate level of correlation with the virulence phenotypes, and some of the molecular/virulence groups contained isolates from different continents. The results indicate tremendous migrations of P. striiformis f. sp. tritici and warrant the development of management strategies considering the global pathogen population.

Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1534-1542 ◽  
Author(s):  
Anmin Wan ◽  
Xianming Chen

Puccinia striiformis f. sp. tritici causes stripe rust (yellow rust) of wheat and is highly variable in virulence toward wheat with race-specific resistance. During 2010, wheat stripe rust was the most widespread in the recorded history of the United States, resulting in large-scale application of fungicides and substantial yield loss. A new differential set with 18 yellow rust (Yr) single-gene lines was established and used to differentiate races of P. striiformis f. sp. tritici, which were named as race PSTv in distinction from the PST races identified in the past. An octal system was used to describe the virulence and avirulence patterns of the PSTv races. From 348 viable P. striiformis f. sp. tritici isolates recovered from a total of 381 wheat and grass stripe rust samples collected in 24 states, 41 races, named PSTv-1 to PSTv-41, were identified using the new set of 18 Yr single-gene differentials, and their equivalent PST race names were determined on the previous set of 20 wheat cultivar differentials. The frequencies and distributions of the races and their virulences were determined. The five most predominant races were PSTv-37 (34.5%), PSTv-11 (17.5%), PSTv-14 (7.2%), PSTv-36 (5.2%), and PSTv-34 (4.9%). PSTv-37 was distributed throughout the country while PSTv-11 and PSTv-14 were almost restricted to states west of the Rocky Mountains. The races had virulence to 0 to 13 of the 18 Yr genes. Frequencies of virulences toward resistance genes Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, Yr43, Yr44, YrTr1, and YrExp2 were high (67.0 to 93.7%); those to Yr1 (32.8%) and YrTye (31.3%) were moderate; and those to Yr10, Yr24, Yr32, and YrSP were low (3.4 to 5.7%). All of the isolates were avirulent to Yr5 and Yr15.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 379-386 ◽  
Author(s):  
D. Sharma-Poudyal ◽  
X. M. Chen ◽  
A. M. Wan ◽  
G. M. Zhan ◽  
Z. S. Kang ◽  
...  

Wheat stripe rust (yellow rust [Yr]), caused by Puccinia striiformis f. sp. tritici, is an economically important disease of wheat worldwide. Virulence information on P. striiformis f. sp. tritici populations is important to implement effective disease control with resistant cultivars. In total, 235 P. striiformis f. sp. tritici isolates from Algeria, Australia, Canada, Chile, China, Hungary, Kenya, Nepal, Pakistan, Russia, Spain, Turkey, and Uzbekistan were tested on 20 single Yr-gene lines and the 20 wheat genotypes that are used to differentiate P. striiformis f. sp. tritici races in the United States. The 235 isolates were identified as 129 virulence patterns on the single-gene lines and 169 virulence patterns on the U.S. differentials. Virulences to YrA, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, YrUkn, Yr28, Yr31, YrExp2, Lemhi (Yr21), Paha (YrPa1, YrPa2, YrPa3), Druchamp (Yr3a, YrD, YrDru), Produra (YrPr1, YrPr2), Stephens (Yr3a, YrS, YrSte), Lee (Yr7, Yr22, Yr23), Fielder (Yr6, Yr20), Tyee (YrTye), Tres (YrTr1, YrTr2), Express (YrExp1, YrExp2), Clement (Yr9, YrCle), and Compair (Yr8, Yr19) were detected in all countries. At least 80% of the isolates were virulent on YrA, Yr2, Yr6, Yr7, Yr8, Yr17, YrUkn, Yr31, YrExp2, Yr21, Stephens (Yr3a, YrS, YrSte), Lee (Yr7, Yr22, Yr23), and Fielder (Yr6, Yr20). Virulences to Yr1, Yr9, Yr25, Yr27, Yr28, Heines VII (Yr2, YrHVII), Paha (YrPa1, YrPa2, YrPa3), Druchamp (Yr3a, YrD, YrDru), Produra (YrPr1, YrPr2), Yamhill (Yr2, Yr4a, YrYam), Tyee (YrTye), Tres (YrTr1, YrTr2), Hyak (Yr17, YrTye), Express (YrExp1, YrExp2), Clement (Yr9, YrCle), and Compair (Yr8, Yr19) were moderately frequent (>20 to <80%). Virulence to Yr10, Yr24, Yr32, YrSP, and Moro (Yr10, YrMor) was low (≤20%). Virulence to Moro was absent in Algeria, Australia, Canada, Kenya, Russia, Spain, Turkey, and China, but 5% of the Chinese isolates were virulent to Yr10. None of the isolates from Algeria, Canada, China, Kenya, Russia, and Spain was virulent to Yr24; none of the isolates from Algeria, Australia, Canada, Nepal, Russia, and Spain was virulent to Yr32; none of the isolates from Australia, Canada, Chile, Hungary, Kenya, Kenya, Nepal, Pakistan, Russia, and Spain was virulent to YrSP; and none of the isolates from any country was virulent to Yr5 and Yr15. Although the frequencies of virulence factors were different, most of the P. striiformis f. sp. tritici isolates from these countries shared common virulence factors. The virulences and their frequencies and distributions should be useful in breeding stripe-rust-resistant wheat cultivars and understanding the pathogen migration and evolution.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qi Liu ◽  
Yilin Gu ◽  
Shuhe Wang ◽  
Cuicui Wang ◽  
Zhanhong Ma

Stripe rust, caused byPuccinia striiformisf. sp.tritici(Pst), is one of the important wheat diseases worldwide. In this study, the spectral data were collected from wheat canopy during the latent period inoculated with three different concentrations of urediniospores and classification models based on discriminant partial least squares (DPLS) were built to differentiate leaves with and without infection of the stripe rust pathogen. The effects of different spectra features, wavebands, and the number of the samples used in modeling on the performances of the models were assessed. The results showed that, in the spectral region of 325–1075 nm, the model with the spectral feature of 2nd derivative of Pseudoabsorption index had better accuracy than others. The average accuracy rate was 97.28% for the training set and 92.98% for the testing set. In the waveband of 925–1075 nm, the model with the spectral feature of 1st derivative Pseudoabsorption index had better accuracy than other models, and the average accuracy rates were 98.27% and 94.33% for the training and testing sets, respectively. The results demonstrated that wheat stripe rust in latent period can be qualitatively identified based on the canopy spectral detection. Thus, the method can be used for early monitoring of infections of wheat stripe rust.


2021 ◽  
Vol 22 (17) ◽  
pp. 9457
Author(s):  
Qing Bai ◽  
Anmin Wan ◽  
Meinan Wang ◽  
Deven R. See ◽  
Xianming Chen

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. To understand the worldwide distribution of its molecular groups, as well as the diversity, differentiation, and migration of the Pst populations, 567 isolates collected from nine countries (China, Pakistan, Italy, Egypt, Ethiopia, Canada, Mexico, Ecuador, and the U.S.) in 2010–2018 were genotyped using 14 codominant simple sequence repeat markers. A total of 433, including 333 new multi-locus genotypes (MLGs), were identified, which were clustered into ten molecular groups (MGs). The MGs and country-wise populations differed in genetic diversity, heterozygosity, and correlation coefficient between the marker and virulence data. Many isolates from different countries, especially the isolates from Mexico, Ecuador, and the U.S., were found to be identical or closely related MLGs, and some of the MGs were present in all countries, indicating Pst migrations among different countries. The analysis of molecular variance revealed 78% variation among isolates, 12% variation among countries, and 10% variation within countries. Only low levels of differentiation were found by the pairwise comparisons of country populations. Of the 10 MGs, 5 were found to be involved in sexual and/or somatic recombination. Identical and closely related MLGs identified from different countries indicated international migrations. The study provides information on the distributions of various Pst genetic groups in different countries and evidence for the global migrations, which should be useful in understanding the pathogen evolution and in stressing the need for continual monitoring of the disease and pathogen populations at the global scale.


2009 ◽  
Vol 99 (8) ◽  
pp. 968-973 ◽  
Author(s):  
F. Dedryver ◽  
S. Paillard ◽  
S. Mallard ◽  
O. Robert ◽  
M. Trottet ◽  
...  

Stripe rust, caused by Puccinia striiformis f. tritici, is one of the most widespread and destructive wheat diseases in areas where cool temperatures prevail. The wheat cv. Renan, carrying the specific gene Yr17, has shown effective resistance for a long time, even though some pathotypes overcame the Yr17 gene. The objectives of this study were to locate and map genetic loci associated with adult-plant resistance (APR) to stripe rust in a recombinant inbred line population derived from a cross between Renan (resistant) and Récital (susceptible). Field assays were performed for 4 years (1995, 1996, 2005, and 2006) to score disease-progress data and identify APR quantitative trait loci (QTLs). Three QTLs, QYr.inra-2BS, QYr.inra-3BS, and QYr.inra-6B, with resistance alleles derived from Renan were detected in 1995 to 1996 with the 237E141 pathotype, which is avirulent against genotypes carrying Yr17. These QTLs were stable and explained a major part of the phenotypic variation seen in 2005 to 2006, when the 237E141 V17 pathotype was used. Each of these QTLs contributed ≈4 to 15% of the phenotypic variance and was effective at different adult plant stages. Interactions were observed between some markers of the Yr17 gene and three Renan QTLs: QYr.inra-2BS, QYr.inra-3BS, and QYr.inra-6B. Resistance based on the combination of different APR types should provide durable resistance to P. striiformis.


Plant Disease ◽  
2021 ◽  
Author(s):  
Mercy Wamalwa ◽  
Ruth Wanyera ◽  
Julian Rodriguez-Algaba ◽  
Lesley Boyd ◽  
James Owuoche ◽  
...  

Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a major threat to wheat (Triticum spp.) production worldwide. The objective of this study was to determine the virulence of Pst races prevalent in the main wheat growing regions of Kenya, which includes Mt. Kenya, Eastern Kenya, and the Rift Valley (Central, Southern, and Northern Rift). Fifty Pst isolates collected from 1970 to 1992 and from 2009 to 2014 were virulence phenotyped using stripe rust differential sets, and 45 isolates were genotyped with sequence characterized amplified region (SCAR) markers to differentiate among the isolates and identify aggressive strains PstS1 and PstS2. Virulence corresponding to stripe rust resistance genes Yr1, Yr2, Yr3, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27 and the seedling resistance in genotype Avocet S were detected. Ten races were detected in the Pst samples obtained from 1970 to 1992, and three additional races were detected from 2009 to 2014, with a single race being detected in both periods. The SCAR markers detected both Pst1 and Pst2 strains in the collection. Increasing Pst virulence was found in the Kenyan Pst population, and that diverse Pst race groups dominated different wheat growing regions. Moreover, recent Pst races in east Africa indicated possible migration of some race groups into Kenya from other regions. This study is important in understanding Pst evolution and virulence diversity and useful in breeding wheat cultivars with effective resistance to stripe rust. Keywords: pathogenicity, Puccinia f. sp. tritici stripe (yellow) rust, Triticum aestivum


2018 ◽  
Author(s):  
Liga Feodorova-Fedotova ◽  
◽  
Biruta Bankina ◽  

Author(s):  
Valeria Moreno Heredia

Yellow rust is caused by the fungus Puccinia striiformis f.sp.tritici (Pst), which due to its great migratory capacity, adaptation to different environments, and high levels of mutation; is one of the most devastating wheat diseases worldwide. Due to this, several strategies have been implemented to control the disease, the best being genetic improvement. The key to develop resistant cultivars is understanding the interactions between wheat and Pst. Therefore, this work synthesizes the most important investigations carried out in the last 30 years regarding: cellular, histological, and molecular interactions between wheat and Pst. This will allow a deeper and more complete understanding of the interaction between resistance and virulence genes in the yellow rust disease. The results of this work revealed that the early stage of infection, in susceptible and resistant cultivars, is the same qualitatively, but not quantitatively. However, a clear difference at the histological and molecular level, in terms of the amount and type of genes expressed, begins 48 hours after infection. It was also found that the haustorium, in addition to absorbing nutrients from the host; can also manipulate its metabolism to benefit itself, and can make some nutrients on its own. Keywords: haustorio, Puccinia striiformis f.sp.tritici, histological, resistance genes, virulence genes. Resumen La roya amarilla es causada por el hongo Puccinia striiformis f.sp.tritici (Pst), el cual debido a su gran capacidad migratoria, adaptación a diferentes ambientes, y niveles altos de mutación; es la enfermedad más devastadoras del trigo a nivel mundial. Debido a esto, varias estrategias han sido implementadas para controlar la enfermedad, siendo la mejor, el mejoramiento genético. La clave para desarrollar cultivares resistentes, es el entendimiento de las interacciones entre el trigo y Pst. Por lo tanto, este trabajo sintetiza las investigaciones más importantes realizadas en los últimos 30 años, en cuanto a interacciones celulares, histológicas y moleculares entre el trigo y Pst. Esto permitirá un entendimiento más profundo y completo de la interacción entre los genes de resistencia y virulencia, en la enfermedad de la roya. Los resultados revelaron que la fase temprana de infección en cultivares susceptibles y resistentes, es igual cualitativamente, pero no cuantitativamente. Sin embargo, una diferencia clara a nivel histológico y molecular, en cuanto a la cantidad y al tipo de genes expresados, empieza 48 hr post infección. También, se halló que el haustorio además de absorber nutrientes del huésped, también manipula el metabolismo de éste para su beneficio y puede elaborar algunos nutrientes por sí mismo. Palabras Clave: haustorio, Puccinia striiformis f.sp.tritici, histológico, genes de resistencia, genes de virulencia.


Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Anmin Wan ◽  
Kebede T. Muleta ◽  
Habtemariam Zegeye ◽  
Bekele Hundie ◽  
Michael O. Pumphrey ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat in Ethiopia. In total, 97 isolates were recovered from stripe rust samples collected in Ethiopia in 2013 and 2014. These isolates were tested on a set of 18 Yr single-gene differentials for characterization of races and 7 supplementary differentials for additional information of virulence. Of 18 P. striiformis f. sp. tritici races identified, the 5 most predominant races were PSTv-105 (21.7%), PSTv-106 (17.5%), PSTv-107 (11.3%), PSTv-76 (10.3%), and PSTv-41 (6.2%). High frequencies (>40%) were detected for virulence to resistance genes Yr1, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27, Yr28, Yr31, Yr43, Yr44, YrExp2, and YrA. Low frequencies (<40%) were detected for virulence to Yr10, Yr24, Yr32, YrTr1, Hybrid 46, and Vilmorin 23. None of the isolates were virulent to Yr5, Yr15, YrSP, and YrTye. Among the six collection regions, Arsi Robe and Tiyo had the highest virulence diversities, followed by Bekoji, while Bale and Holeta had the lowest. Evaluation of 178 Ethiopian wheat cultivars and landraces with two of the Ethiopian races and three races from the United States indicated that the Ethiopian races were more virulent on the germplasm than the predominant races of the United States. Thirteen wheat cultivars or landraces that were resistant or moderately resistant to all five tested races should be useful for breeding wheat cultivars with resistance to stripe rust in both countries.


2009 ◽  
Vol 37 (2) ◽  
pp. 1045-1052 ◽  
Author(s):  
Bo Liu ◽  
Xiaodan Xue ◽  
Suping Cui ◽  
Xiaoyu Zhang ◽  
Qingmei Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document