scholarly journals Modeling Dose-Response Relationships in Biological Control: Partitioning Host Responses to the Pathogen and Biocontrol Agent

1997 ◽  
Vol 87 (7) ◽  
pp. 720-729 ◽  
Author(s):  
Kevin P. Smith ◽  
Jo Handelsman ◽  
Robert M. Goodman

Breeding plants to improve the effectiveness of biocontrol agents is a promising approach to enhance disease suppression by microorganisms. Differences in biocontrol efficacy among cultivars suggest there is genetic variation for this trait within crop germplasm. The ability to quantify host differences in support of biological control is influenced by variation in host response to the pathogen and the dose of pathogen and biocontrol agent applied to the host. To assess the contribution of each of these factors to successful biocontrol interactions, we measured disease over a range of pathogen (Pythium) and biocontrol agent (Bacillus cereus UW85) inoculum doses. We fit dose-response models to these data and used model parameter estimates to quantify host differences in response to the pathogen and biocontrol agent. We first inoculated eight plant species separately with three species of Pythium and evaluated three dose-response models for their ability to describe the disease response to pathogen inoculum level. All three models fit well to at least some of the host-pathogen combinations; the hyperbolic saturation model provided the best overall fit. To quantify the host contribution to biological control, we next evaluated these models with data from a tomato assay, using six inbred tomato lines, P. torulosum, and UW85. The lowest dose of pathogen applied revealed the greatest differences in seedling mortality among the inbred lines, ranging from 40 to 80%. The negative exponential (NE) pathogen model gave the best fit to these pathogen data, and these differences corresponded to model parameter values, which quantify pathogen efficiency, of 0.023 and 0.091. At a high pathogen dose, we detected the greatest differences in biocontrol efficacy among the inbred lines, ranging from no effect to a 68% reduction in mortality. The NE pathogen model with a NE biocontrol component, the NE/NE biocontrol model, gave the best fit to these biocontrol data, and these reductions corresponded to model parameter values, which quantify biocontrol efficiency, of 0.00 and 0.038, respectively. There was no correlation between the host response to the pathogen and biocontrol agent for these inbred lines. This work demonstrates the utility of epidemiological modeling approaches for the study of biological control and lays the groundwork to employ manipulation of host genetics to improve biocontrol efficacy.

2021 ◽  
Vol 2 ◽  
Author(s):  
Esther M. Sundermann ◽  
Maarten Nauta ◽  
Arno Swart

Dose-response models are an important part of quantitative microbiological risk assessments. In this paper, we present a transparent and ready-to-use version of a published dose-response model that estimates the probability of infection and illness after the consumption of a meal that is contaminated with the pathogen Campylobacter jejuni. To this end, model and metadata are implemented in the fskx-standard. The model parameter values are based on data from a set of different studies on the infectivity and pathogenicity of Campylobacter jejuni. Both, challenge studies and outbreaks are considered, users can decide which of these is most suitable for their purpose. We present examples of results for typical ingested doses and demonstrate the utility of our ready-to-use model re-implementation by supplying an executable model embedded in this manuscript.


2010 ◽  
Vol 100 (8) ◽  
pp. 814-821 ◽  
Author(s):  
X.-M. Xu ◽  
N. Salama ◽  
P. Jeffries ◽  
M. J. Jeger

A previously published generic mathematic model has been used in a numerical study to understand the dynamics of foliar pathogens in relation to mechanisms, and timing and coverage of biocontrol agent (BCA) applications. With the model parameter values used, it was demonstrated that a BCA possessing either competition or induced resistance as the main mechanism of biological control was more effective in reducing disease development than a BCA with either mycoparasitism or antibiosis as its mechanism. Application coverage, ranging from 50 to 90%, had little effect on biocontrol efficacy, particularly for a BCA with competition and induced resistance as the main mechanism of biocontrol. Conversely, delayed application of BCA had more profound effects on biocontrol efficacy for those with competition or induced resistance as their main mechanism than those with mycoparasitism and antibiosis. Biocontrol efficacy was greatest for a single BCA combining competition with mycoparasitism or antibiosis. The efficacy for a single BCA combining induced resistance with competition critically depended on application time; the efficacy was greatly reduced for delayed applications. The present study suggests that development of an effective strategy for BCA application is critically dependent upon our quantitative understanding of several key biocontrol processes and their interactions. Without reliable quantitative estimation of these processes, it is impossible to make quantitative predictions about biological control and hence to optimize BCA application strategies.


2021 ◽  
Author(s):  
Nathan Brown ◽  
Edward Rhodes

Luminescence thermochronology and thermometry can quantify recent changes in rock exhumation rates and rock surface temperatures, but these methods require accurate determination of several kinetic parameters. For K-feldspar thermoluminescence (TL) glow curves, which comprise overlapping signals of different thermal stability, it is challenging to develop measurements that capture these parameter values. Here, we present multiple-aliquot additive-dose (MAAD) TL dose response and fading measurements from bedrock-extracted K-feldspars. These measurements are compared with Monte Carlo simulations to identify best-fit values for recombination center density ($\rho$) and activation energy ($\Delta E$). This is done for each dataset separately, and then by combining dose-response and fading misfits to yield more precise $\rho$ and $\Delta E$ values consistent with both experiments. Finally, these values are used to estimate the characteristic dose ($D_0$) of samples. This approach produces kinetic parameter values consistent with comparable studies and results in expected fractional saturation differences between samples.


2005 ◽  
Vol 95 (9) ◽  
pp. 1072-1080 ◽  
Author(s):  
Masahiro Shishido ◽  
Chika Miwa ◽  
Toshiyuki Usami ◽  
Yoshimiki Amemiya ◽  
Kenneth B. Johnson

Efficiency of nonpathogenic Fusarium oxysporum Fo-B2 for the biological control of Fusarium wilt of tomato, caused by F. oxysporum f. sp. lycopersici CU1, was examined in different environments: a growth chamber with sterile soil-less medium, a greenhouse with fumigated or nonfumigated soil, and nonfumigated field plots. Inoculation of Fo-B2 onto tomato roots significantly reduced the severity of disease, but the efficiency of disease suppression decreased as the experimental environment became less controlled. Relationships between the recovery of Fo-B2 from hypocotyls and the disease severity indicated that the biocontrol agent was most effective when it colonized vascular tissues intensively. Moreover, the degree of Fo-B2 colonization was greatly reduced when the seedlings were grown in nonfumigated soil. Dose-response models (negative exponential, hyperbolic saturation, and logistic) were fit to observed data collected over a range of inoculum densities of the pathogen and the antagonist; the logistic model provided the best fit in all environments. The ratios of an 50% effective dose parameter for Fo-B2 to that of CU1 increased as the environment became less controlled, suggesting that environmentally related efficiency reduction impacted the antagonist more than the pathogen. The results suggest that indigenous soil microbes were a primary factor negatively influencing the efficiency of Fo-B2. Therefore, early establishment of the antagonist in a noncompetitive environment prior to outplanting could improve the efficacy of biological control.


Author(s):  
Nicola Orsini

Recognizing a dose–response pattern based on heterogeneous tables of contrasts is hard. Specification of a statistical model that can consider the possible dose–response data-generating mechanism, including its variation across studies, is crucial for statistical inference. The aim of this article is to increase the understanding of mixed-effects dose–response models suitable for tables of correlated estimates. One can use the command drmeta with additive (mean difference) and multiplicative (odds ratios, hazard ratios) measures of association. The postestimation command drmeta_graph greatly facilitates the visualization of predicted average and study-specific dose–response relationships. I illustrate applications of the drmeta command with regression splines in experimental and observational data based on nonlinear and random-effects data-generation mechanisms that can be encountered in health-related sciences.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 471
Author(s):  
Angelica M. Reddy ◽  
Paul D. Pratt ◽  
Brenda J. Grewell ◽  
Nathan E. Harms ◽  
Ximena Cibils-Stewart ◽  
...  

Exotic water primroses (Ludwigia spp.) are aggressive invaders in aquatic ecosystems worldwide. To date, management of exotic Ludwigia spp. has been limited to physical and chemical control methods. Biological control provides an alternative approach for the management of invasive Ludwigia spp. but little is known regarding the natural enemies of these exotic plants. Herein the biology and host range of Lysathia flavipes (Boheman), a herbivorous beetle associated with Ludwigia spp. in Argentina and Uruguay, was studied to determine its suitability as a biocontrol agent for multiple closely related target weeds in the USA. The beetle matures from egg to adult in 19.9 ± 1.4 days at 25 °C; females lived 86.3 ± 35.6 days and laid 1510.6 ± 543.4 eggs over their lifespans. No-choice development and oviposition tests were conducted using four Ludwigia species and seven native plant species. Lysathia flavipes showed little discrimination between plant species: larvae aggressively fed and completed development, and the resulting females (F1 generation) oviposited viable eggs on most plant species regardless of origin. These results indicate that L. flavipes is not sufficiently host-specific for further consideration as a biocontrol agent of exotic Ludwigia spp. in the USA and further testing is not warranted.


Robotica ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Katja D. Mombaur ◽  
Richard W. Longman ◽  
Hans Georg Bock ◽  
Johannes P. Schlöder

We present simulated monopedal and bipedal robots that are capable of open-loop stable periodic running motions without any feedback even though they have no statically stable standing positions. Running as opposed to walking involves flight phases which makes stability a particularly difficult issue. The concept of open-loop stability implies that the actuators receive purely periodic torque or force inputs that are never altered by any feedback in order to prevent the robot from falling. The design of these robots and the choice of model parameter values leading to stable motions is a difficult task that has been accomplished using newly developed stability optimization methods.


Sign in / Sign up

Export Citation Format

Share Document