scholarly journals Identification and Origin of Xanthomonas campestris pv. campestris Races and Related Pathovars

2001 ◽  
Vol 91 (5) ◽  
pp. 492-499 ◽  
Author(s):  
J. G. Vicente ◽  
J. Conway ◽  
S. J. Roberts ◽  
J. D. Taylor

One hundred sixty-four isolates of Xanthomonas campestris pv. campestris and other X. campestris pathovars known to infect cruciferous hosts (X. campestris pvs. aberrans, raphani, armoraciae, and incanae) were inoculated onto a differential series of Brassica spp. to determine both pathogenicity to brassicas and race. Of these, 144 isolates were identified as X. campestris pv. campestris and grouped into six races, with races 1 (62%) and 4 (32%) being predominant. Other races were rare. The remaining 20 isolates from brassicas and other cruciferous hosts were either nonpathogenic or very weakly pathogenic on the differential series and could not be race-typed. Five of these isolates, from the ornamental crucifers wallflower (Cheiranthus cheiri), stock (Matthiola incana) and candytuft (Iberis sp.), showed clear evidence of pathovar-like specificity to the hosts of origin. A gene-for-gene model based on the interaction of four avirulence genes in X. campestris pv. campestris races and four matching resistance genes in the differential hosts is proposed. Knowledge of the race structure and worldwide distribution of races is fundamental to the search for sources of resistance and for the establishment of successful resistance breeding programs.

Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 292-297 ◽  
Author(s):  
M. Lema ◽  
P. Soengas ◽  
P. Velasco ◽  
M. Francisco ◽  
M. E. Cartea

Black rot, caused by Xanthomonas campestris pv. campestris, is one of the most important diseases affecting Brassica crops worldwide. Nine races have been differentiated in X. campestris pv. campestris, with races 1 and 4 being the most virulent and widespread. The objective of this work was to identify sources of resistance to races 1 and 4 of X. campestris pv. campestris in different Brassica napus crops, mainly in the underexplored pabularia group. Seventy-six accessions belonging to four B. napus groups were screened for resistance to two X. campestris pv. campestris races (1 and 4). The strain of race 1 used in this study was more virulent on the tested materials than the strain of race 4. No race-specific resistance was found to race 1. Most cultivars were susceptible except Russian kale, from the pabularia group, which showed some resistant plants and some other accessions with some partially resistant plants. High levels of race-specific resistance to race 4 were found in the pabularia group, and great variability within accessions was identified. Three improved cultivars (Ragged Jack kale, Friese Gele, and Valle del Oro) and four landraces (Russian kale, MBG-BRS0037, MBG-BRS0041, and MBG-BRS0131) showed plants with some degree of resistance to both races, which may indicate that race-nonspecific resistance is involved. These accessions could be directly used in breeding programs, either as improved cultivars or as donors of race-specific resistance to other Brassica cultivars.


2006 ◽  
Vol 96 (7) ◽  
pp. 735-745 ◽  
Author(s):  
J. G. Vicente ◽  
B. Everett ◽  
S. J. Roberts

Twenty-five Xanthomonas isolates, including some isolates received as either X. campestris pv. armoraciae or pv. raphani, caused discrete leaf spot symptoms when spray-inoculated onto at least one Brassica oleracea cultivar. Twelve of these isolates and four other Xanthomonas isolates were spray- and pin-inoculated onto 21 different plant species/cultivars including horseradish (Armoracia rusticana), radish (Raphanus sativus), and tomato (Lycopersicon esculentum). The remaining 13 leaf spot isolates were spray-inoculated onto a subset of 10 plant species/cultivars. The leaf spot isolates were very aggressive on several Brassica spp., radish, and tomato causing leaf spots and dark sunken lesions on the middle vein, petiole, and stem. Based on the differential reactions of several Brassica spp. and radish cultivars, the leaf spot isolates were divided into three races, with races 1 and 3 predominating. A differential series was established to determine the race-type of isolates and a gene-for-gene model based on the interaction of two avirulence genes in the pathogen races and two matching resistance genes in the differential hosts is proposed. Repetitive-DNA polymerase chain reaction-based fingerprinting was used to assess the genetic diversity of the leaf spot isolates and isolates of closely related Xanthomonas pathovars. Although there was variability within each race, the leaf spot isolates were clustered separately from the X. campestris pv. campestris isolates. We propose that X. campestris isolates that cause a nonvascular leaf spot disease on Brassica spp. should be identified as pv. raphani and not pv. armoraciae. Race-type strains and a neopathotype strain for X. campestris pv. raphani are proposed.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 298-305 ◽  
Author(s):  
Brita Dahl Jensen ◽  
Joana G. Vicente ◽  
Hira K. Manandhar ◽  
Steven J. Roberts

Black rot caused by Xanthomonas campestris pv. campestris was found in 28 sampled cabbage fields in five major cabbage-growing districts in Nepal in 2001 and in four cauliflower fields in two districts and a leaf mustard seed bed in 2003. Pathogenic X. campestris pv. campestris strains were obtained from 39 cabbage plants, 4 cauliflower plants, and 1 leaf mustard plant with typical lesions. Repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) using repetitive extragenic palindromic, enterobacterial repetitive intergenic consensus, and BOX primers was used to assess the genetic diversity. Strains were also race typed using a differential series of Brassica spp. Cabbage strains belonged to five races (races 1, 4, 5, 6, and 7), with races 4, 1, and 6 the most common. All cauliflower strains were race 4 and the leaf mustard strain was race 6. A dendrogram derived from the combined rep-PCR profiles showed that the Nepalese X. campestris pv. campestris strains clustered separately from other Xanthomonas spp. and pathovars. Race 1 strains clustered together and strains of races 4, 5, and 6 were each split into at least two clusters. The presence of different races and the genetic variability of the pathogen should be considered when resistant cultivars are bred and introduced into regions in Nepal to control black rot of brassicas.


2002 ◽  
Vol 92 (10) ◽  
pp. 1134-1141 ◽  
Author(s):  
J. G. Vicente ◽  
J. D. Taylor ◽  
A. G. Sharpe ◽  
I. A. P. Parkin ◽  
D. J. Lydiate ◽  
...  

The inheritance of resistance to three Xanthomonas campestris pv. campestris races was studied in crosses between resistant and susceptible lines of Brassica oleracea (C genome), B. carinata (BC genome), and B. napus (AC genome). Resistance to race 3 in the B. oleracea doubled haploid line BOH 85c and in PI 436606 was controlled by a single dominant locus (Xca3). Resistance to races 1 and 3 in the B. oleracea line Badger Inbred-16 was quantitative and recessive. Strong resistance to races 1 and 4 was controlled by a single dominant locus (Xca1) in the B. carinata line PI 199947. This resistance probably originates from the B genome. Resistance to race 4 in three B. napus lines, cv. Cobra, the rapid cycling line CrGC5, and the doubled haploid line N-o-1, was controlled by a single dominant locus (Xca4). A set of doubled haploid lines, selected from a population used previously to develop a restriction fragment length polymorphism map, was used to map this locus. Xca4 was positioned on linkage group N5 of the B. napus A genome, indicating that this resistance originated from B. rapa. Xca4 is the first major locus to be mapped that controls race-specific resistance to X. campestris pv. campestris in Brassica spp.


2002 ◽  
Vol 92 (1) ◽  
pp. 105-111 ◽  
Author(s):  
J. D. Taylor ◽  
J. Conway ◽  
S. J. Roberts ◽  
D. Astley ◽  
J. G. Vicente

Two hundred and seventy-six accessions of mainly Brassica spp. were screened for resistance to Xanthomonas campestris pv. campestris races. In Brassica oleracea (C genome), the majority of accessions were susceptible to all races, but 43% showed resistance to one or more of the rare races (2, 3, 5, and 6) and a single accession showed partial resistance to races 1, 3, 5, and 6. Further searches for resistance to races 1 and 4, currently the most important races worldwide, and race 6, the race with the widest host range, were made in accessions representing the A and B genomes. Strong resistance to race 4 was frequent in B. rapa (A genome) and B. napus (AC genome), indicating an A genome origin. Resistance to races 1 and 4 was present in a high proportion of B. nigra (B genome) and B. carinata (BC genome) accessions, indicating a B genome origin. B. juncea (AB genome) was the most resistant species, showing either strong resistance to races 1 and 4 or quantitative resistance to all races. Potentially race-nonspecific resistance was also found, but at a lower frequency, in B. rapa, B. nigra, and B. carinata. The combination of race-specific and race-nonspecific resistance could provide durable control of black rot of crucifers.


1970 ◽  
Vol 1 (1) ◽  
pp. 1-6 ◽  
Author(s):  
MAU Doullah ◽  
GM Mohsin ◽  
K Ishikawa ◽  
H Hori ◽  
K Okazaki

For quantitative trait loci (QTL) controlling resistance to Xanthomonas campestris pv. Campestris, we constructed linkage map using cleaved amplified plymorphic sequences (CAPS) and sequence-related amplified polymorphism (SRAP) analysis with disease rating of F3 families obtained from a susceptible broccoli and resistant cabbage [Green commet P09 × Reiho P01]. We established inoculation technique. In this technique, leaves from approximately 50-day old F3 plants were inoculated by cutting 1.0 cm at mid vain near the margins. A total of 38 CAPS and 60 SRAP primer pairs were screened to assess parental polymorphism against black rot resistance. Ninety two markers were distributed in 10 linkage groups (LGs) covering 320.5 cM (centimorgan), with average 3.56 cM interval between markers. Two genomic regions on LG 2 and LG 9 were significantly associated with resistance to the disease. The analysis revealed QTLs in the map interval between CAM1 – GSA1 on LG 2 accounting for up to 10% of the phenotypic variation and one QTL in the map interval between F12-R12e – BORED on LG 9 explaining 16% phenotypic variation with LOD score of 3.09. Two additional non-significant QTLs on LG 3 in the interval between CHI – ASB1 (LOD = 2.04) and on LG 7 in the interval between IPI – FLC3 (LOD = 2.25) were also detected for resistance to the disease. The QTLs, which were mapped to LG 2 and LG 9 for the disease, could be useful for marker-assisted selection in resistance breeding. Key words: Linkage map; QTL; Black rot; Resistance; Brassica oleracea  DOI: http://dx.doi.org/10.3329/ijns.v1i1.8591 International Journal of Natural Sciences (2011), 1(1):1-6


Plant Disease ◽  
2009 ◽  
Vol 93 (11) ◽  
pp. 1218-1218
Author(s):  
J. Bila ◽  
A. M. Mondjana ◽  
E. G. Wulff ◽  
C. N. Mortensen

In August and September of 2007, black rot symptoms were observed on seedbed and field plants of Brassica spp. grown in the southern districts of Boane, Mahotas, and Chòkwé in Mozambique. One hundred eighty-two cabbage-growing households were evaluated for the incidence of Xanthomonas campestris pv. campestris. Five Brassica cultivars, Glory F1, Glory of Enkhuizen, Copenhagen Market, Starke (Brassica oleracea pv. capitata L.), and Tronchuda (B. oleracea L. var. costata DC) were grown in the areas for several years. The hybrid Glory F1 was the most popular grown cultivar in the surveyed areas. In the Boane district, the highest incidence of black rot was recorded on Copenhagen Market (70%), Starke (67.9%), and Glory F1 (67.3%). In Chòkwé, Tronchuda (Portuguese kale) was the least affected Brassica crop. Water-soaked lesions starting at the edge of leaves with typical V-shaped necrotic lesions and vein discoloration were the most commonly observed symptoms. When examined with a microscope, cut edges of symptomatic stem and leaf tissues consistently exhibited bacterial streaming. The bacteria were isolated from commercial seed and field-grown plants on semiselective agar media (2). Forty-six X. campestris pv. campestris strains that were gram negative, aerobic, starch positive, nitrate negative, and oxidase negative or weakly positive (3) were further identified on the basis of ELISA (Agdia Inc., Elhart, IN), GN Biolog Microbial Identification System, version 4.2 (Biolog Inc., Hayward, CA), and PCR-specific primers (1). Pathogenicity tests were conducted by pin inoculating two upper leaves of cabbage (cv. Wirosa) in the 2- to 3-leaf stage with bacterial growth from 24-h-old agar cultures (2). Black rot symptoms developed on nearly all inoculated plants within 7 to 14 days. No symptoms were observed on control plants inoculated with a sterile pin without bacterial inoculum. The severity of black rot of Brassica spp. in three important farming districts caused significant losses in Mozambique. References: (1) T. Berg et al. Plant Pathol. 54:416, 2005. (2) S. J. Roberts and H. Koenraadt. Page 1 in: International Rules for Seed Testing: Annexe to Chapter 7 Seed Health Methods. ISTA, 2007. (3) N. W. Schaad et al. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society, St. Paul, MN, 2001.


Author(s):  
Eliška Peňázová ◽  
Tomáš Kopta ◽  
Miloš Jurica ◽  
Jakub Pečenka ◽  
Aleš Eichmeier ◽  
...  

The susceptibility of twenty‑four cabbage breeding lines to Xanthomonas campestris pv. campestris was evaluated. The selection of appropriate inoculation method was done on 4 cabbage cultivars (‘Cerox’, ‘Sintex’, ‘Sonja’ and ‘Avak’). One month old plants were infected by 5 inoculation methods (spraying, injection by syringe, multiple pricking, carborundum abrasion and scissor clipping method). Four different bacterial isolates of Xcc (WHRI 3811, 3971A, 1279A; SU) and their mixture were evaluated for the aggressiveness on ‘Cerox’ and ‘Sonja’ cultivars. On the basis of obtained results, breeding lines of head cabbage were inoculated by mixture of all tested isolates using multiple pricking method. The disease severity of inoculated seedlings proved high susceptibility of young plants to the Xcc infection. The disease incidence determined 75 and 105 days after sowing showed changes for 16 of tested lines and indicated that resistance testing should be observed until mature stage. The study revealed five breeding lines (DP25, T1, IT10, Kalibos and Avak1) with disease incidence lower than 20 % as perspective sources of resistance for further breeding.


Sign in / Sign up

Export Citation Format

Share Document