scholarly journals Expression of an Antifungal Peptide in Saccharomyces: A New Approach for Biological Control of the Postharvest Disease Caused by Colletotrichum coccodes

2002 ◽  
Vol 92 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Richard W. Jones ◽  
Dov Prusky

A cecropin A-based peptide inhibited germination of Colletotrichum coccodes at 50 μM. The DNA sequence encoding the peptide was cloned in pRS413, using the Saccharomyces cerevisiae invertase leader sequence for secretion of the peptide, and expressed in yeast. Yeast transformants inhibited the growth of germinated C. coccodes spores and inhibited decay development caused by C. coccodes in tomato fruits. Expression of the antifungal peptide in yeast therefore represents a new approach for the biological control of postharvest diseases.

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Mutia Erti Dwiastuti ◽  
Loekas Soesanto ◽  
Titistyas Gusti Aji ◽  
Nirmala Friyanti Devy ◽  
Hardiyanto

Abstract Background In Indonesia, the postharvest fruit loss is 25%, so the economic loss from the export of various fruits is estimated at US$ 58,966,861. One of the causes for the loss is postharvest pathogens. Postharvest fruit rot is caused mainly by fungi, some of which produce mycotoxins harmful to human health. Therefore, in meeting the global food safety requirements, Indonesia should develop a biological control strategy for postharvest fruit diseases. This paper is a review based on observations, a literature review of postharvest biological control of citrus and other subtropical fruits, and an overview of strategies and prospects for their application in Indonesia. Main body The pathogens that cause diseases on citrus fruits, apples, grapes, and strawberries in Indonesia produce mycotoxins, namely Fusarium sp., Aspergillus terreus, Aspergillus sp., Penicillium sp., and Alternaria sp. The potential biological agents are from the yeast group, such as the Candida genera, the bacterial group, such as the Bacillus and Pseudomonas genera, and the fungal group, such as the Muscodor and Trichoderma genera. Conclusion Through mutually additive and synergistic multiple reduction methods in cooperation with the vanguards, postharvest disease control emphasizes disease prevention using several methods. Each method reduces the percentage of damage by a certain amount to produce highly effective controls.


Author(s):  
M. Wisniewski ◽  
C. Wilson ◽  
E. Chalutz ◽  
W. Hershberger

As an alternative to fungicides, biological control of postharvest diseases of fruit has recently met with good success with peaches and apples and is an area of great potential. In contrast to previous study, we were particularly interested in finding antagonists that did not produce antibiotics as part of their mode of action. After extensive screening, several yeast and bacteria were identified that exhibited biocontrol of a number of postharvest disease organisms. In particular, the yeast, Debaryomyces hansenii, indicated great potential as a biocontrol agent without exhibiting antibiotic production as a mode of action. It has been recently shown to effectively control decay on citrus caused by Penicillium digitatum, Penicilliim italicum and Geotrichum candidum. The present report is the first to document the use of D. hansenii to control postharvest decay of apples by Botrytis cinerea and present possible inodes of action.To test for biocontrol activity, apples (cv Golden Delicious) ware wounded with a 4 nm cork borer to a depth of 5 mm.


2015 ◽  
Vol 43 (1) ◽  
pp. 159-164 ◽  
Author(s):  
Hua CHENG ◽  
Linling LI ◽  
Juan HUA ◽  
Honghui YUAN ◽  
Shuiyuan CHENG

Recently, there has been an increasing interest among researchers in using combinations of biological control agents to exploit potential synergistic effects among them. In the present study, there were investigated commercially acceptable formulations of Bacillus cereus CE3 wetting powder with long storage life and retained efficacy to control chestnut and other fruit rot caused by Endothia parasitica (Murr) and Fusarium solani. The study sought to develop a new B. cereus formulation that would be more effective and better suited to the conditions of field application. By a series of experiments, the formulation was confirmed as follows: 60% B. cereus freeze-dried powder, 28.9% diatomite as carrier, 4% sodium lignin sulfonate as disperser, 6% alkyl naphthalene sulfonate as wetting agent, 1% K2HPO4 as stabilizer, 0.1% β-cyclodextrin as ultraviolet protectant. The controlling experiments showed that the diluted 100 times of 60% B. cereus wetting powder had 79.47% corrosion rate to chestnut pathogens; and this result is comparable to the diluted 1,000 times of 70% thiophanate-methyl. Safety evaluation results showed that rats acute oral lethal dose 50% was 5,000.35, therefore application of B. cereus wettable powder could not cause a person or animal poisoning. This work illustrated that 60% B. cereus wetting powder had commercial potential; however, to apply this formulation as a biological pesticide in the field, masses production processes need to be further studied.


2018 ◽  
Vol 40 (1) ◽  
Author(s):  
Ivan Herman Fischer ◽  
Matheus Froes de Moraes ◽  
Maria Cecília de Arruda Palharini ◽  
Mirian de Souza Fileti ◽  
Juliana Cristina Sodário Cruz ◽  
...  

ABSTRACT Postharvest diseases constitute a serious problem for avocado commercialization. Thus, the present study aimed to evaluate the effect of conventional and alternative products in controlling diseases affecting ‘Hass’ avocados in the field and in the postharvest by carrying out physicochemical characterization of fruits subjected to postharvest treatments. In the field, besides the management adopted by the farmer, seven products were sprayed three times during fruiting for evaluation. Postharvest products were diluted in water or in oxidized polyethylene wax and shellac. Water treatments with potassium phosphite, Soil-Set®, chlorine dioxide, thyme essential oil, sodium bicarbonate, lemon grass essential oil and thiabendazole reduced the incidence of diseased fruits, and anthracnose, the main disease, was controlled with sodium bicarbonate, lemon grass essential oil and thiabendazole. Greater soluble solids content was found for control (water), chlorine dioxide, acibenzolar-S-methyl and thiabendazole. For the products that reduced anthracnose, there was no correlation between the disease and the physicochemical parameters, evidencing that the disease control is not associated with delayed ripening. For wax treatments, diseases were not controlled, and the fruits presented lower titratable acidity with thyme essential oil, sodium bicarbonate, control (wax), acibenzolar-S-methyl and lemon grass essential oil. Control and thyme essential oil were highlighted for maintaining the green coloration of the fruit skin for the shortest period. Under field conditions, azoxystrobin, thiabendazole, difenoconazole+azoxystrobin and acibenzolar-S-methyl+azoxystrobin reduced the occurrence of diseased fruits, while anthracnose control was only obtained with azoxystrobin.


Author(s):  
Ahmed El Ghaouth ◽  
Charles Wilson ◽  
Michael Wisniewski ◽  
Samir Droby ◽  
Joseph L. Smilanick ◽  
...  

Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 322 ◽  
Author(s):  
Shuwu Zhang ◽  
Qi Zheng ◽  
Bingliang Xu ◽  
Jia Liu

Postharvest fungal disease is one of the significant factors that limits the storage period and marketing life of peaches, and even result in serious economic losses worldwide. Biological control using microbial antagonists has been explored as an alternative approach for the management of postharvest disease of fruits. However, there is little information available regarding to the identification the fungal pathogen species that cause the postharvest peach diseases and the potential and mechanisms of using the Bacillus subtilis JK-14 to control postharvest peach diseases. In the present study, a total of six fungal isolates were isolated from peach fruits, and the isolates of Alternaria tenuis and Botrytis cinerea exhibited the highest pathogenicity and virulence on the host of mature peaches. In the culture plates, the strain of B. subtilis JK-14 showed the significant antagonistic activity against the growth of A. tenuis and B. cinerea with the inhibitory rates of 81.32% and 83.45% at 5 days after incubation, respectively. Peach fruits treated with different formulations of B. subtilis JK-14 significantly reduced the mean disease incidences and lesion diameters of A. tenuis and B. cinerea. The greatest mean percent reduction of the disease incidences (81.99% and 71.34%) and lesion diameters (82.80% and 73.57%) of A. tenuis and B. cinerea were obtained at the concentration of 1 × 107 CFU mL−1 (colony forming unit, CFU). Treatment with the strain of B. subtilis JK-14 effectively enhanced the activity of the antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in A. tenuis and B. cinerea inoculated peach fruits. As such, the average activities of SOD, POD and CAT were increased by 36.56%, 17.63% and 20.35%, respectively, compared to the sterile water treatment. Our results indicate that the isolates of A. tenuis and B. cinerea are the main pathogens that cause the postharvest peach diseases, and the strain of B. subtilis JK-14 can be considered as an environmentally-safe biological control agent for the management of postharvest fruits diseases. We propose the possible mechanisms of the strain of B. subtilis JK-14 in controlling of postharvest peach diseases.


Sign in / Sign up

Export Citation Format

Share Document