scholarly journals Identification of the Fungal Pathogens of Postharvest Disease on Peach Fruits and the Control Mechanisms of Bacillus subtilis JK-14

Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 322 ◽  
Author(s):  
Shuwu Zhang ◽  
Qi Zheng ◽  
Bingliang Xu ◽  
Jia Liu

Postharvest fungal disease is one of the significant factors that limits the storage period and marketing life of peaches, and even result in serious economic losses worldwide. Biological control using microbial antagonists has been explored as an alternative approach for the management of postharvest disease of fruits. However, there is little information available regarding to the identification the fungal pathogen species that cause the postharvest peach diseases and the potential and mechanisms of using the Bacillus subtilis JK-14 to control postharvest peach diseases. In the present study, a total of six fungal isolates were isolated from peach fruits, and the isolates of Alternaria tenuis and Botrytis cinerea exhibited the highest pathogenicity and virulence on the host of mature peaches. In the culture plates, the strain of B. subtilis JK-14 showed the significant antagonistic activity against the growth of A. tenuis and B. cinerea with the inhibitory rates of 81.32% and 83.45% at 5 days after incubation, respectively. Peach fruits treated with different formulations of B. subtilis JK-14 significantly reduced the mean disease incidences and lesion diameters of A. tenuis and B. cinerea. The greatest mean percent reduction of the disease incidences (81.99% and 71.34%) and lesion diameters (82.80% and 73.57%) of A. tenuis and B. cinerea were obtained at the concentration of 1 × 107 CFU mL−1 (colony forming unit, CFU). Treatment with the strain of B. subtilis JK-14 effectively enhanced the activity of the antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in A. tenuis and B. cinerea inoculated peach fruits. As such, the average activities of SOD, POD and CAT were increased by 36.56%, 17.63% and 20.35%, respectively, compared to the sterile water treatment. Our results indicate that the isolates of A. tenuis and B. cinerea are the main pathogens that cause the postharvest peach diseases, and the strain of B. subtilis JK-14 can be considered as an environmentally-safe biological control agent for the management of postharvest fruits diseases. We propose the possible mechanisms of the strain of B. subtilis JK-14 in controlling of postharvest peach diseases.

2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Andrea G. Albarracín Orio ◽  
Romina A. Tobares ◽  
Daniel A. Ducasse ◽  
Andrea M. Smania

Bacillus subtilis is a nonpathogenic bacterium that lives in soil and has long been used as biological control agent in agriculture. Here, we report the genome sequence of a B. subtilis strain isolated from rhizosphere of onion that shows strong biological activity against the soilborne fungal pathogen Setophoma terrestris .


Plant Disease ◽  
2021 ◽  
Author(s):  
Leslie Amanda Holland ◽  
Renaud Travadon ◽  
Daniel P. Lawrence ◽  
Mohamed Taieb Nouri ◽  
Florent P Trouillas

Almond trunk and branch canker diseases constitute a major cause of tree mortality in California. Numerous fungal pathogens have been associated with these canker diseases and pruning wounds act as major infection courts. Prior to this study, there were no products registered in California for the management of these diseases. In this study, fungicidal products including synthetic chemistries, biocontrols, paint and a sealant were evaluated for preventing fungal pathogen infection via pruning wounds. In four field trials conducted over two dormant seasons, sixteen pruning wound treatments were tested using hand-held spray applications, against five almond canker pathogens, namely Botryosphaeria dothidea, Neofusicoccum parvum, Cytospora sorbicola, Ceratocystis destructans, and Eutypa lata. The fungicide thiophanate-methyl (Topsin M) provided 82% overall disease prevention against four fungal pathogens. The biological control agent, Trichoderma atroviride SC1 (Vintec), tested at three application rates, resulted in 90 to 93% protection of pruning wounds in field trials, and for individual pathogens ranged from 81-100% protection for the three rates. At the time of this publication, Vintec is being considered for registration as a biological control product for the prevention of almond canker diseases, while Topsin M is recommended to growers for the prevention of almond canker diseases. This research indicates that effective protection of pruning wounds from infection by almond canker pathogens can be achieved with a one-time spray application of thiophanate-methyl or the biocontrol, T. atroviride SC1 (recommended 2 g/liter) after pruning.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. M. Rahman ◽  
M. E. Ali ◽  
A. A. Khan ◽  
A. M. Akanda ◽  
Md. Kamal Uddin ◽  
...  

A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacteriumErwinia carotovorasubsp.carotovora(Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was testedin vitroagainst the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited thein vitrogrowth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genusBacillusand the isolate E-45 asLactobacillussp. The stronger antagonistic activity against Ecc P-138 was found in E-65in vitroscreening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5–62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers.


1987 ◽  
Vol 33 (12) ◽  
pp. 1102-1107 ◽  
Author(s):  
Keith A. Seifert ◽  
Wendy E. Hamilton ◽  
Colette Breuil ◽  
Maureen Best

Bacillus subtilis C186 was evaluated as a potential biological control agent for sapstain and mould growth on unseasoned lumber. The strain produces antibiotics that are fungistatic to many pine-inhabiting fungi. Although pine blocks precolonized with C186 and subsequently inoculated with staining fungi were generally less discoloured than blocks inoculated only with fungi, discolouration was not sufficiently prevented to warrant further consideration of this strain as a biological control agent. The disappointing performance of C186 is traced to its poor colonization of wood.


2020 ◽  
Vol 9 (24) ◽  
Author(s):  
Nathan Liang ◽  
Suha Jabaji

ABSTRACT Bacillus velezensis strain E68 is a biosurfactant-producing bacterium isolated from an oil battery near Chauvin, Alberta, Canada. Strain E68 exhibited antimicrobial activity against fungal pathogens and could potentially serve as a biological control agent. Its genome was sequenced and annotated, revealing the presence of multiple lipopeptide biosynthetic gene clusters.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 891
Author(s):  
Mila Santos ◽  
Fernando Diánez ◽  
Alejandro Moreno-Gavíra ◽  
Brenda Sánchez-Montesinos ◽  
Francisco J. Gea

A study was conducted to explore the efficacy of potential biocontrol agent Cladobotryum mycophilum against different phytopathogenic fungi. The growth rates of 24 isolates of C. mycophilum were determined, and their antagonistic activity was analysed in vitro and in vivo against Botrytis cinerea, Fusarium oxysporum f. sp. radicis-lycopersici, Fusarium oxysporum f.sp. cucumerinum, Fusarium solani, Phytophthora parasitica, Phytophthora capsici, Pythium aphanidermatum and Mycosphaerella melonis. Most isolates grow rapidly, reaching the opposite end of the Petri dish within 72–96 h. Under dual-culture assays, C. mycophilum showed antagonistic activity in vitro against all phytopathogenic fungi tested, with mycelial growth inhibition ranging from 30 to 90% against all the different phytopathogens tested. Similarly, of all the selected isolates, CL60A, CL17A and CL18A significantly (p < 0.05) reduced the disease incidence and severity in the plant assays compared to the controls for the different pathosystems studied. Based on these results, we conclude that C. mycophilum can be considered as a potential biological control agent in agriculture. This is the first study of Cladobotryum mycophilum as a biological control agent for different diseases caused by highly relevant phytopathogens in horticulture.


2015 ◽  
Vol 338 (12) ◽  
pp. 784-792 ◽  
Author(s):  
Saoussen Ben Khedher ◽  
Olfa Kilani-Feki ◽  
Mouna Dammak ◽  
Hayfa Jabnoun-Khiareddine ◽  
Mejda Daami-Remadi ◽  
...  

2021 ◽  
Vol 7 (8) ◽  
pp. 598
Author(s):  
Brenda Sánchez-Montesinos ◽  
Mila Santos ◽  
Alejandro Moreno-Gavíra ◽  
Teresa Marín-Rodulfo ◽  
Francisco J. Gea ◽  
...  

Our purpose was to evaluate the ability of Trichoderma aggressivum f. europaeum as a biological control agent against diseases from fungal phytopathogens. Twelve isolates of T. aggressivum f. europaeum were obtained from several substrates used for Agaricus bisporus cultivation from farms in Castilla-La Mancha (Spain). Growth rates of the 12 isolates were determined, and their antagonistic activity was analysed in vitro against Botrytis cinerea, Sclerotinia sclerotiorum, Fusarium solani f. cucurbitae, Pythium aphanidermatum, Rhizoctonia solani, and Mycosphaerella melonis, and all isolates had high growth rates. T. aggressivum f. europaeum showed high antagonistic activity for different phytopathogens, greater than 80%, except for P. aphanidermatum at approximately 65%. The most effective isolate, T. aggressivum f. europaeum TAET1, inhibited B. cinerea, S. sclerotiorum, and M. melonis growth by 100% in detached leaves assay and inhibited germination of S. sclerotiorum sclerotia. Disease incidence and severity in plant assays for pathosystems ranged from 22% for F. solani to 80% for M. melonis. This isolate reduced the incidence of Podosphaera xanthii in zucchini leaves by 66.78%. The high compatibility by this isolate with fungicides could allow its use in combination with different pest management strategies. Based on the results, T. aggressivum f. europaeum TAET1 should be considered for studies in commercial greenhouses as a biological control agent.


2017 ◽  
Vol 17 (2) ◽  
pp. 170 ◽  
Author(s):  
Nur Prihatiningsih ◽  
Heru Adi Djatmiko ◽  
Puji Lestari

Siderophore activity of Bacillus subtilis as plant growth promoters and biological control agent of eggplants pathogens. The aims of this research were to identify the siderophores of B. subtilis, to assess its activities as plant growth promoters and biological control agent of eggplants pathogens. Five isolates of B. subtilis i.e.B46, B209, B211, B298 and B 315 grown on SDCASA medium. The isolate which showed the best siderophores production was then further studied on its ability as a growth promoter on eggplants in two soil types with different Fe content. The inhibitory test was conducted against two kinds of pathogens, namely Colletotrichum sp. and Ralstonia solanacearum. The greenhouse experiment was arranged using a factorial completely randomized block design. The first factor was the B. subtilis (B. subtilis B298 and without B. subtilis B298), second factor was the type of soil (Ultisol and Andisol). The variables measured were Fe uptake by plants, plant growth parameters on eggplant i.e. height, leaf number, root length, root volume, weight of fresh and dried shoot as well as fresh and dry root, percentage of inhibition to fungal and bacterial eggplant pathogens. The results showed that the five isolates of B. subtilis were able to produce siderophores as catecholate and hydroxamate types. The best siderophore production was showed by B. subtilis B298. The ability of B. subtilis B298 in accelerating the growth of plants was indicated by the increased of uptake Fe, plant height, leaf number, root volume, weight of dried plants by 45.62%, 25.48%, 19.45%, 41.10% and 34.89% respectively. The inhibition to the fungal and bacterial eggplant pathogens best shown by the isolates of B. subtilis B298 with 55.4% and 22 mm respectively.


Sign in / Sign up

Export Citation Format

Share Document