scholarly journals Identifying Resistance Gene Analogs Associated With Resistances to Different Pathogens in Common Bean

2003 ◽  
Vol 93 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Camilo E. López ◽  
Iván F. Acosta ◽  
Carlos Jara ◽  
Fabio Pedraza ◽  
Eliana Gaitán-Solís ◽  
...  

A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.

Genome ◽  
2006 ◽  
Vol 49 (10) ◽  
pp. 1227-1237 ◽  
Author(s):  
C. Palomino ◽  
Z. Satovic ◽  
J.I. Cubero ◽  
A.M. Torres

A PCR approach with degenerate primers designed from conserved NBS–LRR (nucleotide binding site – leucine-rich repeat) regions of known disease-resistance (R) genes was used to amplify and clone homologous sequences from 5 faba bean (Vicia faba) lines and 2 chickpea (Cicer arietinum) accessions. Sixty-nine sequenced clones showed homologies to various R genes deposited in the GenBank database. The presence of internal kinase-2 and kinase-3a motifs in all the sequences isolated confirm that these clones correspond to NBS-containing genes. Using an amino-acid sequence identitiy of 70% as a threshold value, the clones were grouped into 10 classes of resistance-gene analogs (RGA01 to RGA10). The number of clones per class varied from 1 to 30. RGA classes 1, 6, 8, and 9 were comprised solely of clones isolated from faba bean, whereas classes 2, 3, 4, 5, and 7 included only chickpea clones. RGA10, showing a within-class identity of 99%, was the only class consisting of both faba bean and chickpea clones. A phylogenetic tree, based on the deduced amino-acid sequences of 12 representative clones from the 10 RGA classes and the NBS domains of 6 known R genes (I2 and Prf from tomato, RPP13 from Arabidopsis, Gro1–4 from potato, N from tobacco, L6 from flax), clearly indicated the separation between TIR (Toll/interleukin-1 receptor homology: Gro1–4, L6, N, RGA05 to RGA10)- and non-TIR (I2, Prf, RPP13, RGA01 to RGA04)-type NBS–LRR sequences. The development of suitable polymorphic markers based on cloned RGA sequences to be used in genetic mapping will facilitate the assessment of their potential linkage relationships with disease-resistance genes in faba bean and chickpea. This work is the first to report on faba bean RGAs.


2010 ◽  
Vol 61 (11) ◽  
pp. 929 ◽  
Author(s):  
Guo-Yue Chen ◽  
Yu-Ming Wei ◽  
Ya-Xi Liu ◽  
Li Wei ◽  
Ji-Rui Wang ◽  
...  

Degenerate primers designed from the conserved regions of nucleotide-binding site domains of known plant resistance gene products were used to scan a complete set of wheat–Lophopyrum elongatum addition lines. Forty-six clones were isolated and they were grouped into seven families of resistance gene analogues (RGA). All families were characterised as the Toll–Interleukin receptor group of R-genes (plant disease resistance genes). The putative chromosome-specific SNP (single-nucleotide polymorphism) loci were identified by multiple sequence alignments. Furthermore, 20 E chromosome-specific RGA markers were used to identify polymorphic fragments in wheat–Lo. elongatum addition lines and amphidiploid. The results suggested that these chromosome-specific markers could be not only useful for marker-assisted selection and map-based cloning of R-genes in Lo. elongatum, but also feasible for investigating the evaluation process of the E genome.


2013 ◽  
Vol 103 (2) ◽  
pp. 156-168 ◽  
Author(s):  
Luz N. Garzón ◽  
Oscar A. Oliveros ◽  
Benjamin Rosen ◽  
Gustavo A. Ligarreto ◽  
Douglas R. Cook ◽  
...  

Common bean production is constrained by many fungal, viral, and bacterial pathogens. Thus, the identification of resistance (R) genes is an important focal point of common bean research. The main goal of our study was to identify resistance gene homologues (RGH) in the crop, using degenerate primers designed from conserved sequences in the nucleotide-binding site (NBS) domains of R-genes from the model legume Medicago truncatula. Total DNA of the Andean common bean genotype G19833 was used for amplification of over 500 primer combinations. Sequencing of amplicons showed that 403 cloned fragments had uninterrupted open reading frames and were considered representative of functional RGH genes. The sequences were grouped at two levels of nucleotide identity (90 and 80%) and representative sequences of each group were used for phylogenetic analyses. The RGH sequence diversity of common bean was divided into TIR and non-TIR families, each with different clusters. The TIR sequences grouped into 14 clades while non-TIR sequences grouped into seven clades. Pairwise comparisons showed purifying selection, although some sequences may have been the result of diversifying selection. Knowledge about RGH genes in common bean can allow the design of molecular markers for pyramiding of resistance genes against various pathogens.


Plant Disease ◽  
2002 ◽  
Vol 86 (9) ◽  
pp. 1049-1049 ◽  
Author(s):  
P. L. Ramos ◽  
A. Fernández ◽  
G. Castrillo ◽  
L. Díaz ◽  
A. L. Echemendía ◽  
...  

Macroptilium lathyroides (L) is a weed that is widely distributed in Cuba. Frequently, leaves show bright yellow mosaic symptoms, which suggest the incidence of a viral disease. Since begomovirus occurrence in Macroptilium lathyroides has been previously reported in other islands of the Caribbean (1,3), symptomatic plants from three distant places in Cuba (Havana, Villa Clara, and Camaguey), were collected and tested for the presence of begomoviruses. Plant DNA extracts were analyzed by Southern blot hybridization and polymerase chain reaction with two sets of degenerate primers (2). The presence of a bipartite begomovirus was evident through strong hybridization signals obtained with the DNA-A and DNA-B of Taino tomato mottle virus as probes at low stringency. Furthermore, 1.4-kb and 1.2-kb PCR amplified fragments were obtained with DNA-A degenerate primers, PAL1v1978-PAR1c715 and PAL1c1960-PAR1v722, respectively. Both PCR fragments from the samples from the three locations were cloned, and restriction fragment length polymorphism analysis of the 1.4-kb fragments were performed using PstI, EcoRI, HincII, XbaI and BglII. Restriction fragment patterns were the same for the three clones. The DNA-A sequence (GenBank Accession No. AJ344452) of the isolate from Villa Clara was compared with sequences available for other geminiviruses using CLUSTAL program. For the coat protein (CP) gene, the comparisons had the highest percentage of identity with various strains of Bean golden yellow mosaic virus (BGYMV, GenBank Accession Nos. AF173555, M91604, and L01635) (85 to 87% and 93 to 94%, nucleotide and amino acid sequences, respectively). For Rep gene (1,044 nt), the best percentages of identities were with BGYMV (81 to 82% and 80 to 82% nucleotide and amino acid sequences, respectively), Tomato leaf crumple virus (GenBank Accession No. AF101476) (78 and 81%, nucleotide and amino acid sequences, respectively), and Sida golden mosaic virus from Florida (GenBank Accession No. AF049336) (78 and 79%, nucleotide and amino acid sequences, respectively). Finally, the comparative analysis of the intergenic region (i.e. the common region plus the CP gene promoter) had the highest identity with BGYMV (56 to 55%) and Tomato severe rugose virus (GenBank Accession No. AY029750) (49%). Interestingly, this virus has in this region the three G-box elements that are characteristic of BGYMV but it differs in the Rep protein-binding iterative motif that is GGTGA instead of GGAGA, for BGYMV. These data indicate that this virus is a new begomovirus and the name of Macroptilium yellow mosaic virus (MaYMV) is proposed. References: (1) A. M. Idris et al. Plant Dis. 83:1071, 1999. (2) M. R. Rojas et al. Plant Dis. 77:340, 1993. (3) M. E. Roye et al. Plant Dis. 81:1251, 1997.


2003 ◽  
Vol 93 (7) ◽  
pp. 774-783 ◽  
Author(s):  
A. M. Idris ◽  
E. Hiebert ◽  
J. Bird ◽  
J. K. Brown

Macroptilium lathyroides, a perennial weed in the Caribbean region and Central America, is a host of Macroptilium yellow mosaic Florida virus (MaYMFV) and Macroptilium mosaic Puerto Rico virus (MaMPRV). The genomes of MaYMFV and MaMPRV were cloned from M. lathyroides and/or field-infected bean and the DNA sequences were determined. Cloned A and B components for both viruses were infectious when inoculated to M. lathyroides and common bean. Comparison of the DNA sequences for cloned A and B components with well-studied begomovirus indicated that MaMPRV (bean and M. lathyroides) and MaYMFV (M. lathyroides) are unique, previously undescribed begomo-viruses from the Western Hemisphere. Phylogenetic analysis of viral A components indicated that the closest relative of MaYMFV are members of the Bean golden yellow mosaic virus (BGYMV) group, at 76 to 78% nucleotide identity, whereas the closest relative for the A component of MaMPRV was Rhynchosia golden mosaic virus at 78% nucleotide identity. In contrast, BGYMV is the closest relative for the B component of both MaYMFV and MaMPRV, with which they share ≈68.0 and ≈72% identity, respectively. The incongruent taxonomic placement for the bipartite components for MaMPRV indicates that they did not evolve entirely along a common path. MaYMFV and MaMPRV caused distinctive symptoms in bean and M. lathyroides and were transmissible by the whitefly vector and by grafting; however, only MaYMFV was mechanically transmissible. The experimental host range for the two viruses was similar and included species within the families Fabaceae and Malvaceae, but only MaYMFV infected Malva parviflora and soybean. These results collectively indicate that MaMPRV and MaYMFV are new, previously undescribed species of the BGYMV group, a clade previously known to contain only strains and isolates of BGYMV from the Caribbean region that infect Phaseolus spp. Both MaYMFV and MaMPRV may pose an economic threat to bean production in the region.


Plant Disease ◽  
1997 ◽  
Vol 81 (11) ◽  
pp. 1251-1258 ◽  
Author(s):  
Marcia E. Roye ◽  
Wayne A. McLaughlin ◽  
Medhat K. Nakhla ◽  
Douglas P. Maxwell

Genetic diversity among geminiviruses associated with three common weeds in Jamaica was studied using digoxigenin-labeled geminiviral DNA probes, polymerase chain reaction with degenerate primers for DNA-A and DNA-B, nucleic acid sequencing, and derived amino acid sequences. Geminiviruses with bipartite genomes were found in Sida spp., Macroptilium lathyroides, and Wissadula amplissima. The geminiviruses detected in Sida spp. and M. lathyroides were nearly identical and were both designated Sida golden mosaic geminivirus (SidGMV-JA), whereas the geminivirus in W. amplissima was sufficiently different to be designated Wissadula golden mosaic geminivirus (WGMV). Nucleotide sequence comparisons of the common regions and the N-terminal regions of the AC1 (rep) and AV1 ORFs, together with the derived amino acid sequence comparisons of the N-terminal parts of BC1 and BV1 ORFs were used to determine their similarities to other geminiviruses. SidGMV-JA was most similar to potato yellow mosaic geminivirus (PYMV). We propose that these two geminiviruses (SidGMV-JA and PYMV) define a new geminivirus cluster, the potato yellow mosaic virus (PYMV) cluster. WGMV was most similar to members of the Abutilon mosaic virus cluster but is not likely to be included in the Abutilon phylogenetic group because of the divergent sequence of the common region. These results indicate that geminiviruses infecting some weeds in Jamaica are distinct from crop-infecting geminiviruses in Jamaica and define a new geminivirus cluster.


Plant Disease ◽  
2003 ◽  
Vol 87 (9) ◽  
pp. 1022-1025 ◽  
Author(s):  
V. Bracero ◽  
L. I. Rivera ◽  
J. S. Beaver

The leguminous weed Macroptilium lathyroides is considered a potential host of the Bean golden yellow mosaic virus (BGYMV; BGMV = Mesoamerican isolates). To determine if M. lathyroides could be a host for BGYMV, an infectivity cycle was established between this weed and Phaseolus vulgaris. Virus transmission was carried out using the whitefly, Bemisia argentifolli, as a vector. Inoculated plants of both species were examined for symptoms such as mosaic, stunting, and leaf distortion. P. vulgaris and M. lathyroides showed golden yellow mosaic symptoms during all infectivity cycle stages. Symptomatic plants of both species were tested for BGYMV using polymerase chain reaction (PCR) and nucleotide sequence analysis. Two degenerate primers sets were used for PCR to detect viral DNA: PAL1v1978/PAR1c715 and PCRc2/PBL12039. PCR analysis using primers PCRc2/PBL12039 amplified viral DNA for component B from both plant species. Nucleotide sequence analysis revealed a 93% identity between the virus isolated from M. lathyroides and the Puerto Rican isolate of BGYMV. These results confirmed that M. lathyroides could serve as an alternative host of BGYMV and that an infectivity cycle of BGYMV could possibly occur between P. vulgaris and M. lathyroides in Puerto Rico.


1998 ◽  
Vol 11 (10) ◽  
pp. 968-978 ◽  
Author(s):  
N. C. Collins ◽  
C. A. Webb ◽  
S. Seah ◽  
J. G. Ellis ◽  
S. H. Hulbert ◽  
...  

Many of the plant disease resistance genes that have been isolated encode proteins with a putative nucleotide binding site and leucine-rich repeats (NBS-LRR resistance genes). Oligonucleotide primers based on conserved motifs in and around the NBS of known NBS-LRR resistance proteins were used to amplify sequences from maize genomic DNA by polymerase chain reaction (PCR). Eleven classes of non-cross-hybridizing sequences were obtained that had predicted products with high levels of amino acid identity to NBS-LRR resistance proteins. These maize resistance gene analogs (RGAs) and one RGA clone obtained previously from wheat were used as probes to map 20 restriction fragment length polymorphism (RFLP) loci in maize. Some RFLPs were shown to map to genomic regions containing virus and fungus resistance genes. Perfect co-segregation was observed between RGA loci and the rust resistance loci rp1 and rp3. The RGA probe associated with rp1 also detected deletion events in several rp1 mutants. These data strongly suggest that some of the RGA clones may hybridize to resistance genes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250066
Author(s):  
Minor R. Maliano ◽  
Mônica A. Macedo ◽  
Maria R. Rojas ◽  
Robert L. Gilbertson

In the Caribbean Basin, malvaceous weeds commonly show striking golden/yellow mosaic symptoms. Leaf samples from Malachra sp. and Abutilon sp. plants with these symptoms were collected in Hispaniola from 2014 to 2020. PCR tests with degenerate primers revealed that all samples were infected with a bipartite begomovirus, and sequence analyses showed that Malachra sp. plants were infected with tobacco leaf curl Cuba virus (TbLCuCV), whereas the Abutilon sp. plants were infected with a new bipartite begomovirus, tentatively named Abutilon golden yellow mosaic virus (AbGYMV). Phylogenetic analyses showed that TbLCuCV and AbGYMV are distinct but closely related species, which are most closely related to bipartite begomoviruses infecting weeds in the Caribbean Basin. Infectious cloned DNA-A and DNA-B components were used to fulfilled Koch’s postulates for these diseases of Malachra sp. and Abutilon sp. In host range studies, TbLCuCV also induced severe symptoms in Nicotiana benthamiana, tobacco and common bean plants; whereas AbGYMV induced few or no symptoms in plants of these species. Pseudorecombinants generated with the infectious clones of these viruses were highly infectious and induced severe symptoms in N. benthamiana and Malachra sp., and both viruses coinfected Malachra sp., and possibly facilitating virus evolution via recombination and pseudorecombination. Together, our results suggest that TbLCuCV primarily infects Malachra sp. in the Caribbean Basin, and occasionally spills over to infect and cause disease in crops; whereas AbGYMV is well-adapted to an Abutilon sp. in the Dominican Republic and has not been reported infecting crops.


Sign in / Sign up

Export Citation Format

Share Document