scholarly journals Dynamics of blood lactate concentration during recovery period of short duration‐high intensity exercise in acute hypoxia or normoxia

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Naoya Takei ◽  
Katsuyuki Kakinoki ◽  
Hideo Hatta
2020 ◽  
Vol 18 (2) ◽  
pp. 1327-1335
Author(s):  
Hee-Jeong Son ◽  
◽  
Hyeong-Tae Kwon ◽  
Hyo-Sik Kim

1996 ◽  
Vol 81 (4) ◽  
pp. 1550-1554 ◽  
Author(s):  
K. W. Hinchcliff ◽  
K. H. McKeever ◽  
W. W. Muir ◽  
R. A. Sams

Hinchcliff, K. W., K. H. McKeever, W. W. Muir, and R. A. Sams. Furosemide reduces accumulated oxygen deficit in horses during brief intense exertion. J. Appl. Physiol. 81(4): 1550–1554, 1996.—We theorized that furosemide-induced weight reduction would reduce the contribution of anaerobic metabolism to energy expenditure of horses during intense exertion. The effects of furosemide on accumulated O2 deficit and plasma lactate concentration of horses during high-intensity exercise were examined in a three-way balance randomized crossover study. Nine horses completed each of three trials: 1) a control (C) trial, 2) a furosemide-unloaded (FU) trial in which the horse received furosemide 4 h before running, and 3) a furosemide weight-loaded (FL) trial during which the horse received furosemide and carried weight equal to the weight lost after furosemide administration. Horses ran for 2 min at ∼120% maximal O2 consumption. Furosemide (FU) increased O2 consumption (ml ⋅ 2 min−1 ⋅ kg−1) compared with C (268 ± 9 and 257 ± 9, P < 0.05), whereas FL was not different from C (252 ± 8). Accumulated O2 deficit (ml O2 equivalents/kg) was significantly ( P < 0.05) lower during FU (81.2 ± 12.5), but not during FL (96.9 ± 12.4), than during C (91.4 ± 11.5). Rate of increase in blood lactate concentration (mmol ⋅ 2 min−1 ⋅ kg−1) after FU (0.058 ± 0.001), but not after FL (0.061 ± 0.001), was significantly ( P < 0.05) lower than after C (0.061 ± 0.001). Furosemide decreased the accumulated O2 deficit and rate of increase in blood lactate concentration of horses during brief high-intensity exertion. The reduction in accumulated O2 deficit in FU-treated horses was attributable to an increase in the mass-specific rate of O2 consumption during the high-intensity exercise test.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jonghyuk Park ◽  
Jimmy Kim ◽  
Toshio Mikami

Regular exercise training induces mitochondrial biogenesis in the brain via activation of peroxisome proliferator-activated receptor gamma-coactivator 1α (PGC-1α). However, it remains unclear whether a single bout of exercise would increase mitochondrial biogenesis in the brain. Therefore, we first investigated whether mitochondrial biogenesis in the hippocampus is affected by a single bout of exercise in mice. A single bout of high-intensity exercise, but not low- or moderate-intensity, increased hippocampal PGC-1α mRNA and mitochondrial DNA (mtDNA) copy number at 12 and 48h. These results depended on exercise intensity, and blood lactate levels observed immediately after exercise. As lactate induces mitochondrial biogenesis in the brain, we examined the effects of acute lactate administration on blood and hippocampal extracellular lactate concentration by in vivo microdialysis. Intraperitoneal (I.P.) lactate injection increased hippocampal extracellular lactate concentration to the same as blood lactate level, promoting PGC-1α mRNA expression in the hippocampus. However, this was suppressed by administering UK5099, a lactate transporter inhibitor, before lactate injection. I.P. UK5099 administration did not affect running performance and blood lactate concentration immediately after exercise but attenuated exercise-induced hippocampal PGC-1α mRNA and mtDNA copy number. In addition, hippocampal monocarboxylate transporters (MCT)1, MCT2, and brain-derived neurotrophic factor (BDNF) mRNA expression, except MCT4, also increased after high-intensity exercise, which was abolished by UK5099 administration. Further, injection of 1,4-dideoxy-1,4-imino-D-arabinitol (glycogen phosphorylase inhibitor) into the hippocampus before high-intensity exercise suppressed glycogen consumption during exercise, but hippocampal lactate, PGC-1α, MCT1, and MCT2 mRNA concentrations were not altered after exercise. These results indicate that the increased blood lactate released from skeletal muscle may induce hippocampal mitochondrial biogenesis and BDNF expression by inducing MCT expression in mice, especially during short-term high-intensity exercise. Thus, a single bout of exercise above the lactate threshold could provide an effective strategy for increasing mitochondrial biogenesis in the hippocampus.


2003 ◽  
Vol 94 (6) ◽  
pp. 2135-2144 ◽  
Author(s):  
Murli Manohar ◽  
Thomas E. Goetz ◽  
Aslam S. Hassan

It is reported that preexercise hyperhydration caused arterial O2 tension of horses performing submaximal exercise to decrease further by 15 Torr (Sosa-Leon L, Hodgson DR, Evans DL, Ray SP, Carlson GP, and Rose RJ. Equine Vet J Suppl 34: 425–429, 2002). Because hydration status is important to optimal athletic performance and thermoregulation during exercise, the present study examined whether preexercise induction of hypervolemia would similarly accentuate the arterial hypoxemia in Thoroughbreds performing short-term high-intensity exercise. Two sets of experiments (namely, control and hypervolemia studies) were carried out on seven healthy, exercise-trained Thoroughbred horses in random order, 7 days apart. In resting horses, an 18.0 ± 1.8% increase in plasma volume was induced with NaCl (0.30–0.45 g/kg dissolved in 1,500 ml H2O) administered via a nasogastric tube, 285–290 min preexercise. Blood-gas and pH measurements as well as concentrations of plasma protein, hemoglobin, and blood lactate were determined at rest and during incremental exercise leading to maximal exertion (14 m/s on a 3.5% uphill grade) that induced pulmonary hemorrhage in all horses in both treatments. In both treatments, significant arterial hypoxemia, desaturation of hemoglobin, hypercapnia, acidosis, and hyperthermia developed during maximal exercise, but statistically significant differences between treatments were not found. Thus preexercise 18% expansion of plasma volume failed to significantly affect the development and/or severity of arterial hypoxemia in Thoroughbreds performing maximal exercise. Although blood lactate concentration and arterial pH were unaffected, hemodilution caused in this manner resulted in a significant ( P < 0.01) attenuation of the exercise-induced expansion of the arterial-to-mixed venous blood O2 content gradient.


2012 ◽  
Vol 37 (5) ◽  
pp. 976-981 ◽  
Author(s):  
John Jakeman ◽  
Simon Adamson ◽  
John Babraj

High-intensity training (HIT) involving 30-s sprints is an effective training regimen to improve aerobic performance. We tested whether 6-s HITs can improve aerobic performance in triathletes. Six subelite triathletes (age, 40 ± 9 years; weight, 86 ± 11 kg; body mass index, 26 ± 3 kg·m–2) took part in cycle HIT and 6 endurance-trained subelite athletes (age, 36 ± 9 years; weight, 82 ± 11 kg; BMI, 26 ± 3 kg·m–2) maintained their normal training routine. Before and after 2 weeks of HIT, involving 10 × 6-s sprints or normal activity, participants performed a self-paced 10-km time trial and a time to exhaustion test on a cycle ergometer. Finger prick blood samples were taken throughout the time to exhaustion test to determine blood lactate concentration. Two weeks of HIT resulted in a 10% decrease in self-paced 10-km time trial (p = 0.03) but no significant change in time to exhaustion. The time taken to reach onset of blood lactate accumulation (OBLA, defined as the point where blood lactate reaches 4 mmol·L–1) was significantly increased following 2 weeks of HIT (p = 0.003). The change in time trial performance was correlated to the change in time taken to reach OBLA (R2 = 0.63; p = 0.001). We concluded that a very short duration HIT is a very effective training regimen to improve aerobic performance in subelite triathletes and this is associated with a delay in blood lactate build-up.


1976 ◽  
Vol 33 (1) ◽  
pp. 173-176 ◽  
Author(s):  
William R. Driedzic ◽  
Joe W. Kiceniuk

Rainbow trout (Salmo gairdneri) were exercised to fatigue in a series of 60-min stepwise increasing velocity increments. There was no increase in blood lactate concentration, serially sampled during swimming by means of indwelling dorsal and ventral aortic catheters, at velocities as high as 93% of critical velocity of individuals. The data show that under these conditions the rate of production of lactate by white muscle, at less than critical velocities, is minimal or that the rate of elimination of lactate from white muscle is equal to its rate of utilization elsewhere. Immediately following fatigue blood lactate level increases rapidly. During the recovery period there appears to be a net uptake of lactate by the gills.


2015 ◽  
Vol 10 (3) ◽  
pp. 388-395 ◽  
Author(s):  
Nuttaset Manimmanakorn ◽  
Jenny J. Ross ◽  
Apiwan Manimmanakorn ◽  
Samuel J.E. Lucas ◽  
Michael J. Hamlin

Purpose:To compare whole-body vibration (WBV) with traditional recovery protocols after a high-intensity training bout.Methods:In a randomized crossover study, 16 athletes performed 6 × 30-s Wingate sprints before completing either an active recovery (10 min of cycling and stretching) or WBV for 10 min in a series of exercises on a vibration platform. Muscle hemodynamics (assessed via near-infrared spectroscopy) were measured before and during exercise and into the 10-min recovery period. Blood lactate concentration, vertical jump, quadriceps strength, flexibility, rating of perceived exertion (RPE), muscle soreness, and performance during a single 30-s Wingate test were assessed at baseline and 30 and 60 min postexercise. A subset of participants (n = 6) completed a 3rd identical trial (1 wk later) using a passive 10-min recovery period (sitting).Results:There were no clear effects between the recovery protocols for blood lactate concentration, quadriceps strength, jump height, flexibility, RPE, muscle soreness, or single Wingate performance across all measured recovery time points. However, the WBV recovery protocol substantially increased the tissue-oxygenation index compared with the active (11.2% ± 2.4% [mean ± 95% CI], effect size [ES] = 3.1, and –7.3% ± 4.1%, ES = –2.1 for the 10 min postexercise and postrecovery, respectively) and passive recovery conditions (4.1% ± 2.2%, ES = 1.3, 10 min postexercise only).Conclusion:Although WBV during recovery increased muscle oxygenation, it had little effect in improving subsequent performance compared with a normal active recovery.


2014 ◽  
Vol 9 (3) ◽  
pp. 471-479 ◽  
Author(s):  
Jack D. Ade ◽  
Jamie A. Harley ◽  
Paul S. Bradley

Purpose:To quantify the physiological responses, time–motion characteristics, and reproducibility of various speed-endurance-production (SEP) and speed-endurance-maintenance (SEM) drills.Methods:Sixteen elite male youth soccer players completed 4 drills: SEP 1 v 1 small-sided game (SSG), SEP running drill, SEM 2 v 2 SSG, and SEM running drill. Heart-rate response, blood lactate concentration, subjective rating of perceived exertion (RPE), and time–motion characteristics were recorded for each drill.Results:The SEP and SEM running drills elicited greater (P < .05) heart-rate responses, blood lactate concentrations, and RPE than the respective SSGs (ES 1.1–1.4 and 1.0–3.2). Players covered less (P < .01) total distance and high-intensity distance in the SEP and SEM SSGs than in the respective running drills (ES 6.0–22.1 and 3.0–18.4). Greater distances (P < .01) were covered in high to maximum acceleration/deceleration bands during the SEP and SEM SSGs than the respective running drills (ES 2.6–4.6 and 2.3–4.8). The SEP SSG and generic running protocols produced greater (P < .05) blood lactate concentrations than the respective SEM protocols (ES 1.2–1.7). Small to moderate test–retest variability was observed for heart-rate response (CV 0.9–1.9%), RPE (CV 2.9–5.7%), and blood lactate concentration (CV 9.9–14.4%); moderate to large test–retest variability was observed for high-intensity-running parameters (CV > 11.3%) and the majority of accelerations/deceleration distances (CV > 9.8%) for each drill.Conclusions:The data demonstrate the potential to tax the anaerobic energy system to different extents using speed-endurance SSGs and that SSGs elicit greater acceleration/deceleration load than generic running drills.


Sign in / Sign up

Export Citation Format

Share Document