extracellular lactate
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 25)

H-INDEX

21
(FIVE YEARS 3)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 514
Author(s):  
Eliana Fernandes ◽  
Ana Ledo ◽  
Rui M. Barbosa

Direct in vivo measurements of neurometabolic markers in the brain with high spatio-temporal resolution, sensitivity, and selectivity is highly important to understand neurometabolism. Electrochemical biosensors based on microelectrodes are very attractive analytical tools for continuous monitoring of neurometabolic markers, such as lactate and glucose in the brain extracellular space at resting and following neuronal activation. Here, we assess the merits of a platinized carbon fiber microelectrode (CFM/Pt) as a sensing platform for developing enzyme oxidase-based microbiosensors to measure extracellular lactate in the brain. Lactate oxidase was immobilized on the CFM/Pt surface by crosslinking with glutaraldehyde. The CFM/Pt-based lactate microbiosensor exhibited high sensitivity and selectivity, good operational stability, and low dependence on oxygen, temperature, and pH. An array consisting of a glucose and lactate microbiosensors, including a null sensor, was used for concurrent measurement of both neurometabolic substrates in vivo in the anesthetized rat brain. Rapid changes of lactate and glucose were observed in the cortex and hippocampus in response to local glucose and lactate application and upon insulin-induced fluctuations of systemic glucose. Overall, these results indicate that microbiosensors are a valuable tool to investigate neurometabolism and to better understand the role of major neurometabolic markers, such as lactate and glucose.


2022 ◽  
Vol 15 ◽  
Author(s):  
Alexandria Béland-Millar ◽  
Claude Messier

Learning or performing new behaviors requires significant neuronal signaling and is metabolically demanding. The metabolic cost of performing a behavior is mitigated by exposure and practice which result in diminished signaling and metabolic requirements. We examined the impact of novel and habituated wheel running, as well as effortful behaviors on the modulation of extracellular glucose and lactate using biosensors inserted in the primary motor cortex of mice. We found that motor behaviors produce increases in extracellular lactate and decreases in extracellular glucose in the primary motor cortex. These effects were modulated by experience, novelty and intensity of the behavior. The increase in extracellular lactate appears to be strongly associated with novelty of a behavior as well as the difficulty of performing a behavior. Our observations are consistent with the view that a main function of aerobic glycolysis is not to fuel the current neuronal activity but to sustain new bio-infrastructure as learning changes neural networks, chiefly through the shuttling of glucose derived carbons into the pentose phosphate pathway for the biosynthesis of nucleotides.


2021 ◽  
Vol 12 ◽  
Author(s):  
Judith Schenz ◽  
Lena Heilig ◽  
Tim Lohse ◽  
Lucas Tichy ◽  
Katharina Bomans ◽  
...  

Elevated blood lactate levels are frequently found in critically ill patients and thought to result from tissue hypoperfusion and cellular oxygen shortage. Considering the close relationship between immune cell function and intracellular metabolism, lactate is more than a glycolytic waste molecule but able to regulate the immune response. Our aim was to elucidate the temporal and mechanistic effect of extracellular lactate on monocytes. To this end, primary human monocytes and the human monocytic cell line MonoMac6 were stimulated with various toll-like-receptor agonists after priming with Na-L-lactate under constant pH conditions. As readout, cytokine production was measured, real-time assessment of intracellular energy pathways was performed, and intracellular metabolite concentrations were determined. Irrespective of the immunogenic stimulus, short-term Na-lactate-priming strongly reduced cytokine production capacity. Lactate and hexoses accumulated intracellularly and, together with a decreased glycolytic flux, indicate a lactate-triggered impairment of glycolysis. To counteract intracellular hyperglycemia, glucose is shunted into the branching polyol pathway, leading to sorbitol accumulation. In contrast, long-term priming with Na-L-lactate induced cellular adaption and abolished the suppressive effect. This lactate tolerance is characterized by a decreased cellular respiration due to a reduced complex-I activity. Our results indicate that exogenous lactate shapes monocyte function by altering the intracellular energy metabolism and acts as a metabolic checkpoint of monocyte activation.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2649-2649
Author(s):  
Laura A Evans ◽  
Emilie I Anderson ◽  
Xuan-Mai Petterson ◽  
Shaji Kumar ◽  
Wilson I Gonsalves

Abstract Introduction: Altered cellular metabolism is a hallmark of every cancer cell. Aerobic glycolysis ("The Warburg Effect") is one of the earliest recognized metabolic abnormalities in cancer cells whereby extracellular glucose is preferentially metabolized and eventually processed to generate lactate and energy in the form of ATP before the former is released extracellularly, irrespective of oxygen availability. While extracellular lactate produced and released from cancer cells has traditionally been considered a waste metabolic by-product, recent understanding of cell metabolism suggests that it can also serve as a primary metabolic fuel for cancer cells via uptake by monocarboxylate transporters (MCTs). Our goal was to evaluate this "Reverse Warburg Effect" phenomenon in multiple myeloma (MM) cells and determine if it can be exploited for therapeutic purposes. Methods: All HMCLs, MM1S, RPMI-8226 and U266, were grown in RPMI-1640 cell culture medium containing 11 mM glucose and supplemented with 10% dialyzed fetal bovine serum (FBS) and 2 mM Glutamine. Primary MM cells were extracted using magnetic bead CD138 positive selection from MM patient bone marrow aspirates. For 13C-labeling experiments, HMCLs and primary MM cells were suspended in RPMI-1640 cell culture media containing 13C-labeled isotopes. Isotopomer analysis of glycolytic and tricarboxylic acid (TCA) cycle metabolites from HMCL and primary MM cell pellets was performed using Agilent Technologies 5975C gas chromatography-mass spectrometry. Small molecule inhibitors, AZD3965 and syrosingopine, were purchased from Selleck Chemicals and Sigma respectively. Cellular viability and proliferation were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrasodium bromide (MTT) and CCK-8 assays respectively. MCT-1 and MCT-4 antibodies for western blotting were utilized to evaluate their cell membrane expression on HMCLs. Results: The HMCLs, MM1S and RPMI-8226 as well as primary CD138+ cells from MM patient bone marrow were cultured in cell culture media containing physiological levels (1 mM) of U-13C-Lactate. The incorporation of extracellular 13C into the intracellular glycolytic and TCA cycle metabolite pool was observed (Fig 1) based on the expected isotopomeric patterns, demonstrating the Reverse Warburg Effect in MM cells. The relative contribution of carbon substrate by extracellular lactate compared to extracellular glucose was assessed in the following HMCLs: MM1S, RPMI-8226 and U266 cells by culturing in cell culture media containing 3-13C-Lactate and U-13C-Glucose. Extracellular lactate (yellow bar) contribution to the formation of TCA metabolites equaled that of glucose (red bar) based on the expected isotopomer patterns, suggesting the relative importance of extracellular lactate as an essential nutrient like glucose (Fig 2). Since MCT-1 and MCT-4 are key bidirectional cell membrane transporters of lactate in and out of cells, we explored the clinical significance of their gene expression level on clinical outcomes using the COMMPASS dataset provided by the Multiple Myeloma Research Foundation (MMRF). When MM patients were dichotomized at above or below the median of the expression levels of fragments per kilobase of transcript per million (FPKM), MCT-1 and MCT-4 overexpression conferred a worse progression free survival and overall survival (Fig 3). The MCT-1/MCT-4 protein expression was detectable across the various HMCLs: MM1S, U266 and RPMI-8226 (Fig 4). Inhibition of MCT-1 by specific inhibitor AZD3965 was able to reduce proliferation but not affect viability of HMCLs at 48 hours (Fig 5). However, dual inhibition of MCT-1/MCT-4 using syrosingopine was able to significantly reduce proliferation and decrease viability of HMCLs in a dose dependent fashion (Fig 6). Finally, dual inhibition of MCT-1/MCT-4 using syrosingopine reduced the utilization of extracellular lactate into the TCA cycle pool by HMCLs in media containing 3-13C-Lactate (Fig 7). Conclusion: Utilization of extracellular lactate via Reverse Warburg Effect phenomenon appears highly active in MM cells. Disrupting the utilization of extracellular lactate by dual inhibition of both MCT-1 and MCT-4 appears therapeutic. In the future, dual inhibition of MCT-1/MCT-4 in combination with other anti-MM therapies should be evaluated to determine synergistic therapeutic potential. Figure 1 Figure 1. Disclosures Kumar: Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; KITE: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Carsgen: Research Funding; Sanofi: Research Funding; Novartis: Research Funding; Antengene: Consultancy, Honoraria; Beigene: Consultancy; Bluebird Bio: Consultancy; Adaptive: Membership on an entity's Board of Directors or advisory committees, Research Funding; Tenebio: Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Consultancy; Astra-Zeneca: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Research Funding; Roche-Genentech: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Research Funding.


2021 ◽  
Author(s):  
Lucia Longhitano ◽  
Nunzio Vicario ◽  
Daniele Tibullo ◽  
Cesarina Giallongo ◽  
Giuseppe Broggi ◽  
...  

Abstract Background. Tumor microenvironment (TME) plays a pivotal role in establishing malignancy and it is associated with high glycolytic metabolism and increased lactate production accumulating in TME through monocarboxylate transporters (MCTs). Several lines of evidence suggest that lactate also serves as a signalling molecule through its receptor HCAR1thus functioning as a paracrine and autocrine signalling molecule in TME. The aim of the present study was to investigate the role of lactate in glioblastoma (GBM) progression and metabolic reprogramming in an in vitro and in vivo model.Methods. Cell proliferation, migration and clonogenicity assay were performed in vitro on three different human GBM cell lines. Protein expression of MCT1, MCT4 and pharmacological lactate receptor (GPR81) were evaluated both in vitro and in a zebrafish GBM in vivo model. These results were further validated in patient-derived GBM biopsies.Results. Our results showed that lactate significantly increased cell proliferation, migration and colony formation capacity of GBM cells, both in vitro and in vivo. We also showed that lactate increased MCT1 and HCAR1 expression. Moreover, lactate modulated epithelial-mesenchymal transition protein markers E-Cadherin and β-Catenin. Interestingly, lactate induced mitochondrial mass and OXPHOS gene suggesting an improved mitochondrial fitness. Similar effects were observed after treatment with 3,5-Dihydroxybenzoic acid, a known agonist of GPR81. Consistently, GBM zebrafish model exhibited an altered metabolism and increased expression of MCT1 and HCAR1 leading to high levels of extracellular lactate and thus supporting tumor cell proliferation. Our data from human GBM biopsies also showed that in high proliferative GBM biopsies, Ki67 positive cells expressed significantly higher levels of MCT1 compared to low proliferative GBM cells.Conclusions. Our data suggest that lactate favours proliferation of neighbourhood cells by cooperating with their glycolytic metabolism, sensing and removing extracellular lactate. In particular, lactate and its transporter and receptor play a major role in GBM proliferation and migration thus representing a potential target to develop new strategies to counteract tumor progression and recurrencies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cilian Ó Maoldomhnaigh ◽  
Donal J. Cox ◽  
James J. Phelan ◽  
Morgane Mitermite ◽  
Dearbhla M. Murphy ◽  
...  

In order to mount an appropriate immune response to infection, the macrophage must alter its metabolism by increasing aerobic glycolysis and concomitantly decreasing oxidative phosphorylation; a process known as the Warburg effect. Consequently, lactate, the end-product of glycolysis, accumulates in the extracellular environment. The subsequent effect of lactate on surrounding macrophages is poorly understood. Mycobacterium tuberculosis (Mtb), the causative organism of Tuberculosis (TB), is phagocytosed by macrophages in the airways. Mtb infected macrophages upregulate aerobic glycolysis and effector functions to try to kill the bacteria. Our lab has previously shown that human macrophages produce lactate in response to infection with Mtb. Although lactate has largely been considered a waste product of aerobic glycolysis, we hypothesised that the presence of extracellular lactate would impact subsequent immunometabolic responses and modulate macrophage function. We demonstrate that the presence of exogenous lactate has an immediate effect on the cellular metabolism of resting human macrophages; causing a decrease in extracellular acidification rate (ECAR; analogous to the rate of glycolysis) and an increase in the oxygen consumption rate (OCR; analogous to oxidative phosphorylation). When lactate-treated macrophages were stimulated with Mtb or LPS, glycolysis proceeds to increase immediately upon stimulation but oxidative phosphorylation remains stable compared with untreated cells that display a decrease in OCR. This resulted in a significantly reduced ECAR/OCR ratio early in response to stimulation. Since altered metabolism is intrinsically linked to macrophage function, we examined the effect of lactate on macrophage cytokine production and ability to kill Mtb. Lactate significantly reduced the concentrations of TNF and IL-1β produced by human macrophages in response to Mtb but did not alter IL-10 and IL-6 production. In addition, lactate significantly improved bacillary clearance in human macrophages infected with Mtb, through a mechanism that is, at least in part, mediated by promoting autophagy. These data indicate that lactate, the product of glycolysis, has a negative feedback effect on macrophages resulting in an attenuated glycolytic shift upon subsequent stimulation and reduced pro-inflammatory cytokine production. Interestingly, this pro-resolution effect of lactate is associated with increased capacity to kill Mtb.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jonghyuk Park ◽  
Jimmy Kim ◽  
Toshio Mikami

Regular exercise training induces mitochondrial biogenesis in the brain via activation of peroxisome proliferator-activated receptor gamma-coactivator 1α (PGC-1α). However, it remains unclear whether a single bout of exercise would increase mitochondrial biogenesis in the brain. Therefore, we first investigated whether mitochondrial biogenesis in the hippocampus is affected by a single bout of exercise in mice. A single bout of high-intensity exercise, but not low- or moderate-intensity, increased hippocampal PGC-1α mRNA and mitochondrial DNA (mtDNA) copy number at 12 and 48h. These results depended on exercise intensity, and blood lactate levels observed immediately after exercise. As lactate induces mitochondrial biogenesis in the brain, we examined the effects of acute lactate administration on blood and hippocampal extracellular lactate concentration by in vivo microdialysis. Intraperitoneal (I.P.) lactate injection increased hippocampal extracellular lactate concentration to the same as blood lactate level, promoting PGC-1α mRNA expression in the hippocampus. However, this was suppressed by administering UK5099, a lactate transporter inhibitor, before lactate injection. I.P. UK5099 administration did not affect running performance and blood lactate concentration immediately after exercise but attenuated exercise-induced hippocampal PGC-1α mRNA and mtDNA copy number. In addition, hippocampal monocarboxylate transporters (MCT)1, MCT2, and brain-derived neurotrophic factor (BDNF) mRNA expression, except MCT4, also increased after high-intensity exercise, which was abolished by UK5099 administration. Further, injection of 1,4-dideoxy-1,4-imino-D-arabinitol (glycogen phosphorylase inhibitor) into the hippocampus before high-intensity exercise suppressed glycogen consumption during exercise, but hippocampal lactate, PGC-1α, MCT1, and MCT2 mRNA concentrations were not altered after exercise. These results indicate that the increased blood lactate released from skeletal muscle may induce hippocampal mitochondrial biogenesis and BDNF expression by inducing MCT expression in mice, especially during short-term high-intensity exercise. Thus, a single bout of exercise above the lactate threshold could provide an effective strategy for increasing mitochondrial biogenesis in the hippocampus.


Author(s):  
Kun Yang ◽  
Min Fan ◽  
Xiaohui Wang ◽  
Jingjing Xu ◽  
Yana Wang ◽  
...  

AbstractHigh circulating levels of lactate and high mobility group box-1 (HMGB1) are associated with the severity and mortality of sepsis. However, it is unclear whether lactate could promote HMGB1 release during sepsis. The present study demonstrated a novel role of lactate in HMGB1 lactylation and acetylation in macrophages during polymicrobial sepsis. We found that macrophages can uptake extracellular lactate via monocarboxylate transporters (MCTs) to promote HMGB1 lactylation via a p300/CBP-dependent mechanism. We also observed that lactate stimulates HMGB1 acetylation by Hippo/YAP-mediated suppression of deacetylase SIRT1 and β-arrestin2-mediated recruitment of acetylases p300/CBP to the nucleus via G protein-coupled receptor 81 (GPR81). The lactylated/acetylated HMGB1 is released from macrophages via exosome secretion which increases endothelium permeability. In vivo reduction of lactate production and/or inhibition of GPR81-mediated signaling decreases circulating exosomal HMGB1 levels and improves survival outcome in polymicrobial sepsis. Our results provide the basis for targeting lactate/lactate-associated signaling to combat sepsis.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 966
Author(s):  
Florencia Cascardo ◽  
Nicolás Anselmino ◽  
Alejandra Páez ◽  
Estefanía Labanca ◽  
Pablo Sanchis ◽  
...  

Prostate cancer (PCa) is the second most diagnosed malignancy and the fifth leading cause of cancer associated death in men worldwide. Dysregulation of cellular energetics has become a hallmark of cancer, evidenced by numerous connections between signaling pathways that include oncoproteins and key metabolic enzymes. We previously showed that heme oxygenase 1 (HO-1), a cellular homeostatic regulator counteracting oxidative and inflammatory damage, exhibits anti-tumoral activity in PCa cells, inhibiting cell proliferation, migration, tumor growth and angiogenesis. The aim of this study was to assess the role of HO-1 on the metabolic signature of PCa. After HO-1 pharmacological induction with hemin, PC3 and C4-2B cells exhibited a significantly impaired cellular metabolic rate, reflected by glucose uptake, ATP production, lactate dehydrogenase (LDH) activity and extracellular lactate levels. Further, we undertook a bioinformatics approach to assess the clinical significance of LDHA, LDHB and HMOX1 in PCa, identifying that high LDHA or low LDHB expression was associated with reduced relapse free survival (RFS). Interestingly, the shortest RFS was observed for PCa patients with low HMOX1 and high LDHA, while an improved prognosis was observed for those with high HMOX1 and LDHB. Thus, HO-1 induction causes a shift in the cellular metabolic profile of PCa, leading to a less aggressive phenotype of the disease.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Maryam Mehri ◽  
Fatemeh Saeedi ◽  
Roghayeh Porbagher ◽  
Amrollah Mastafazadeh

Background: Immunometabolism targeting therapy of auto-inflammatory diseases is an emerging strategy compared to immune system global suppression. However, our knowledge in this field needs promotion. Objectives: We examined the effects of serum starvation stress on metabolic activity in human peripheral blood mononuclear cells (PBMCs). Methods: Fresh immune cells were isolated from four healthy adult volunteers and cultivated with or without fetal bovine serum (FBS) at various time points under standard conditions. Glucose and intra- and extracellular lactate levels were assessed using routine techniques, and 3-(4, 5 -dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reduction assay was used to determine mitochondrial function. Results: Spindle shape macrophage-like cells, which appeared early, were replaced at 96 h by large round monocytes/macrophage-like cells, with more frequency in the non-starved group. Interestingly, serum starvation dictated a status, especially in monocyte/macrophage-like cells, that led to prolong decrement in mitochondrial dehydrogenase-mediated reduction of MTT. This difference was confirmed with the MTT assay quantitatively (P < 0.05). Moreover, the intra- and extracellular lactate concentrations were lower in starved cells than in non-starved controls (P < 0.05), and glucose levels were higher in 72 h starved cell culture supernatants than in non-starved control cells (P < 0.05). Conclusions: This study showed that under serum starvation-induced metabolic stress, lactate production is altered in immune cells, and total oxidative mitochondrial activity is reduced in macrophage-like cells. These findings open a new window to target immune cell metabolism for the treatment of autoinflammatory and autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document