scholarly journals The Role of Nesprin in the Facial Branchiomotor Neuron (FBMN) Migration of Danio rerio (zebrafish) development

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Aishwarya Nugooru ◽  
Daniel E. Conway ◽  
Gregory Walsh
Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2001
Author(s):  
Greta Baratti ◽  
Angelo Rizzo ◽  
Maria Elena Miletto Petrazzini ◽  
Valeria Anna Sovrano

Zebrafish spontaneously use distance and directional relationships among three-dimensional extended surfaces to reorient within a rectangular arena. However, they fail to take advantage of either an array of freestanding corners or an array of unequal-length surfaces to search for a no-longer-present goal under a spontaneous cued memory procedure, being unable to use the information supplied by corners and length without some kind of rewarded training. The present study aimed to tease apart the geometric components characterizing a rectangular enclosure under a procedure recruiting the reference memory, thus training zebrafish in fragmented layouts that provided differences in surface distance, corners, and length. Results showed that fish, besides the distance, easily learned to use both corners and length if subjected to a rewarded exit task over time, suggesting that they can represent all the geometrically informative parts of a rectangular arena when consistently exposed to them. Altogether, these findings highlight crucially important issues apropos the employment of different behavioral protocols (spontaneous choice versus training over time) to assess spatial abilities of zebrafish, further paving the way to deepen the role of visual and nonvisual encodings of isolated geometric components in relation to macrostructural boundaries.


2009 ◽  
Vol 297 (2) ◽  
pp. R412-R420 ◽  
Author(s):  
Shelby L. Steele ◽  
Kwok Hong Andy Lo ◽  
Vincent Wai Tsun Li ◽  
Shuk Han Cheng ◽  
Marc Ekker ◽  
...  

Fish exposed to hypoxia develop decreased heart rate, or bradycardia, the physiological significance of which remains unknown. The general muscarinic receptor antagonist atropine abolishes the development of this hypoxic bradycardia, suggesting the involvement of muscarinic receptors. In this study, we tested the hypothesis that the hypoxic bradycardia is mediated specifically by stimulation of the M2 muscarinic receptor, the most abundant subtype in the vertebrate heart. Zebrafish ( Danio rerio) were reared at two levels of hypoxia (30 and 40 Torr Po2) from the point of fertilization. In hypoxic fish, the heart rate was significantly lower than in normoxic controls from 2 to 10 days postfertilization (dpf). At the more severe level of hypoxia (30 Torr Po2), there were significant increases in the relative mRNA expression of M 2 and the cardiac type β-adrenergic receptors ( β1AR, β2aAR, and β2bAR) at 4 dpf. The hypoxic bradycardia was abolished (at 40 Torr Po2) or significantly attenuated (at 30 Torr Po2) in larvae experiencing M2 receptor knockdown (using morpholino antisense oligonucleotides). Sham-injected larvae exhibited typical hypoxic bradycardia in both hypoxic regimens. The expression of β1AR, β2aAR, β2bAR, and M 2 mRNA was altered at various stages between 1 and 4 dpf in larvae experiencing M2 receptor knockdown. Interestingly, M2 receptor knockdown revealed a cardioinhibitory role for the β2-adrenergic receptor. This is the first study to demonstrate a specific role of the M2 muscarinic receptor in the initiation of hypoxic bradycardia in fish.


Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 4158-4169 ◽  
Author(s):  
Lucinda B. Griffin ◽  
Kathleen E. January ◽  
Karen W. Ho ◽  
Kellie A. Cotter ◽  
Gloria V. Callard

Genetically distinct estrogen receptor (ER) subtypes (ERα and ERβ) play a major role in mediating estrogen actions in vertebrates, but their unique and overlapping functions are not entirely clear. Although mammals have 1 gene of each subtype (ESR1 and ESR2), teleost fish have a single esr1 (ERα) and 2 esr2 (ERβa and ERβb) genes. To determine the in vivo role of different ER isoforms in regulating estrogen-inducible transcription targets, zebrafish (Danio rerio) embryos were microinjected with esr-specific morpholino (MO) oligonucleotides to disrupt splicing of the exon III/intron III junction in the DNA-binding domain. Each MO knocked down its respective normal transcript and increased production of variants with a retained intron III (esr1 MO) or a deleted or mis-spliced exon III (esr2a and esr2b MOs). Both esr1 and esr2b MOs blocked estradiol induction of vitellogenin and ERα mRNAs, predominant hepatic genes, but esr2b was the only MO that blocked induction of cytochrome P450 aromatase B mRNA, a predominant brain gene. Knockdown of ERβa with the esr2a MO had no effect on estrogen induction of the 3 mRNAs but, when coinjected with esr1 MO, attenuated the effect of ERα knockdown. Results indicate that ERα and ERβb, acting separately or cooperatively on specific gene targets, are positive transcriptional regulators of estrogen action, but the role of ERβa, if any, is unclear. We conclude that MO technology in zebrafish embryos is an advantageous approach for investigating the interplay of ER subtypes in a true physiological context.


Author(s):  
Sudha N ◽  
Arambakkam Janardhanam Vanisree

Background: Nickel chloride, a widely occurring heavy metal compound is reported to be neuro toxic to organisms. It was shown to cause detrimental behaviour and biochemical changes. However, its effect on the nervous system of offspring of the victimized organisms and the combating strategies remain unexplained. Such studies could broaden our knowledge on the detrimental effect of toxic compounds and help in developing suitable combating strategies. Purpose: To evaluate the neuroprotective role of ethyl acetate extract (EA) of Curcuma amada in the brain of F1 progeny of Danio rerio (Zebrafish) which has been gestationally exposed to neurotoxicant nickel chloride. Methods: The group distribution of the study was Group I-Control Juvenile Fish, Group II-Juvenile fish obtained from female fishes subjected to nickel chloride exposure for 50 days, Group III-Juvenile fish obtained from female fish subjected to nickel chloride exposure and co- treated with EA extract of Curcuma amada (150µg) from 30th day to 50th day, Group-IV-Juvenile fish treated with EA extract of Curcuma amada (150µg) for 50 days. Neuroprotective role of ethyl acetate extract of Curcuma amada was evaluated in the juvenile fish (F1 progeny) by performing anxiety and memory test, visualizing ultra-structural changes of juvenile brain using transmission electron microscopy and biochemical assay of membrane bound enzymes. Result: In Colour preference test, there was marked reduction in anxiety behavior in the F1 progeny of exposed fish co treated with EA extract of Curcuma amada (Group III) compared to F1 progeny of metal exposed group (Group-II). In the novel object rejection test, there was a marked improvement in the memory and learning pattern of the EA extract of Curcuma amada treated fishes (Group III) compared to F1 progeny of metal exposed group (Group-II). TEM analysis showed clumped and condensed chromatin, peripheral margination and empty mitochondria with loss of cristae and lipid droplets in Nickel exposed model (Group-II) which was found to be alleviated in EA extract of Curcuma amada co-treated group (Group-III). Altered activities of Calcium ATPases and Sodium potassium ATPases was noted in Nickel chloride exposed Group (Group-II) which however were regulated by EA extract of Curcuma amada. Conclusion: The study suggests that Curcuma amada could combat the toxic effect of nickel chloride in the juvenile fish, the progeny of the exposed adult female.


2020 ◽  
Vol 202 ◽  
pp. 110876 ◽  
Author(s):  
Hemily Batista-Silva ◽  
Keyla Rodrigues ◽  
Kieiv Resende Sousa de Moura ◽  
Glen Van Der Kraak ◽  
Christelle Delalande-Lecapitaine ◽  
...  

2020 ◽  
Vol 319 (3) ◽  
pp. R329-R342
Author(s):  
N. Koudrina ◽  
S. F. Perry ◽  
K. M. Gilmour

Peripheral chemosensitivity in fishes is thought to be mediated by serotonin-enriched neuroepithelial cells (NECs) that are localized to the gills of adults and the integument of larvae. In adult zebrafish ( Danio rerio), branchial NECs are presumed to mediate the cardiorespiratory reflexes associated with hypoxia or hypercapnia, whereas in larvae, there is indirect evidence linking cutaneous NECs to hypoxic hyperventilation and hypercapnic tachycardia. No study yet has examined the ventilatory response of larval zebrafish to hypercapnia, and regardless of developmental stage, the signaling pathways involved in CO2 sensing remain unclear. In the mouse, a background potassium channel (TASK-2) contributes to the sensitivity of chemoreceptor cells to CO2. Zebrafish possess two TASK-2 channel paralogs, TASK-2 and TASK-2b, encoded by kcnk5a and kcnk5b, respectively. The present study aimed to determine whether TASK-2 channels are expressed in NECs of larval zebrafish and whether they are involved in CO2 sensing. Using immunohistochemical approaches, TASK-2 protein was observed on the surface of NECs in larvae. Exposure of larvae to hypercapnia caused cardiac and breathing frequencies to increase, and these responses were blunted in fish experiencing TASK-2 and/or TASK-2b knockdown. The results of these experiments suggest that TASK-2 channels are involved in CO2 sensing by NECs and contribute to the initiation of reflex cardiorespiratory responses during exposure of larvae to hypercapnia.


2009 ◽  
Vol 44 (5) ◽  
pp. 413-418 ◽  
Author(s):  
Kouji Uda ◽  
Ai Kuwasaki ◽  
Kanami Shima ◽  
Tamotsu Matsumoto ◽  
Tomohiko Suzuki

Sign in / Sign up

Export Citation Format

Share Document