scholarly journals Sphingomyelin synthase‐related protein generates diacylglycerol via hydrolysis of phosphatidic acid, phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine without ceramide

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Chiaki Murakami ◽  
Fumio Sakane
1955 ◽  
Vol 33 (1) ◽  
pp. 575-589 ◽  
Author(s):  
Morris Kates

Enzymatic liberation of choline from egg lecithin by plastid fractions from sugar beet, spinach, and cabbage leaves and from carrot root was a rapid, first order reaction (up to 70% hydrolysis), and was not preceded by a lag phase. None of the choline-containing products of lecithin degradation (lysolecithin, glycerylphosphorylcholine, or phosphorylcholine) lost choline on incubation with spinach chloroplasts. Inorganic phosphate liberation from lecithin by the plastids was preceded by a lag phase and was much slower than choline liberation. Spinach chloroplasts catalyzed the liberation of inorganic phosphate from L-α-phosphatidic acid and from L-α-glycerophosphate. The water-soluble organic phosphate liberated from lecithin by spinach chloroplasts was identified chromatographically as phosphorylcholine. The ether-soluble organic phosphate produced during the hydrolysis of egg lecithin by carrot plastids was isolated and identified as L-α-phosphatidic acid. These observations suggest that the enzymatic hydrolysis of lecithin by plant plastids involves the following reactions: (1) lecithin → L-α-phosphatidic acid + choline; (2) L-α-phosphatidic acid → inorganic phosphate + diglyceride and/or (3) L-α-phosphatidic acid → glycerophosphate + fatty acids and (4) glycerophosphate → inorganic phosphate + glycerol; and (5) lecithin → phosphorylcholine + diglyceride. The L-α-structure for egg lecithin was confirmed.


2002 ◽  
Vol 46 (11) ◽  
pp. 3617-3620 ◽  
Author(s):  
Carol A. Baker ◽  
Kevin Desrosiers ◽  
Joseph W. Dolan

ABSTRACT Propranolol was used to investigate the role of phosphatidic acid (PA) and diacylglycerol in the dimorphic transition in Candida albicans. Propranolol was able to inhibit the appearance of germ tubes without decreasing growth rate. Data suggest that inhibition of morphogenesis may be due to binding by propranolol of PA derived from PLD1 hydrolysis of phosphatidylcholine.


2020 ◽  
Vol 21 (14) ◽  
pp. 4984
Author(s):  
Maria Klimecka ◽  
Maria Bucholc ◽  
Justyna Maszkowska ◽  
Ewa Krzywińska ◽  
Grażyna Goch ◽  
...  

Phosphatidic acid (PA) is involved in the regulation of plant growth and development, as well as responses to various environmental stimuli. Several PA targets in plant cells were identified, including two SNF1-related protein kinases 2 (SnRK2s), SnRK2.10 and SnRK2.4, which are not activated by abscisic acid (ABA). Here, we investigated the effects of PA on various elements of ABA-non-activated SnRK2 signaling. PA 16:0/18:1 was found to modulate the SnRK2 structure and the phosphorylation of some SnRK2 targets. Conversely, phosphorylation by the ABA-non-activated SnRK2s, of one of such targets, dehydrin Early Responsive to Dehydration 14 (ERD14), affects its interaction with PA and subcellular localization. Moreover, PA 16:0/18:1 modulates the activity and/or localization of negative regulators of the ABA-non-activated SnRK2s, not only of the ABA insensitive 1 (ABI1) phosphatase, which was identified earlier, but also of another protein phosphatase 2C, PP2CA. The activity of both phosphatases was inhibited by about 50% in the presence of 50 μM PA. PA 16:0/18:1 also impacts the phosphorylation and subcellular localization of SnRK2-interacting calcium sensor, known to inhibit SnRK2 activity in a calcium-dependent manner. Thus, PA was found to regulate ABA-non-activated SnRK2 signaling at several levels: the activity, phosphorylation status and/or localization of SnRK2 cellular partners.


2002 ◽  
Vol 362 (3) ◽  
pp. 619-626 ◽  
Author(s):  
Katsuhiro KITA ◽  
Noriyuki SUEYOSHI ◽  
Nozomu OKINO ◽  
Masanori INAGAKI ◽  
Hideharu ISHIDA ◽  
...  

We have reported previously that the ceramidase from Pseudomonas aeruginosa AN17 isolated from a patient with atopic dermatitis requires detergents for hydrolysis of ceramide (Cer) [Okino, Tani, Imayama and Ito (1998) J. Biol. Chem. 273, 14368–14373]. In the present study, we report that some glycerophospholipids strongly activated the hydrolysis of Cer by Pseudomonas ceramidase in the absence of detergents. Among the glycerophospholipids tested, cardiolipin was most effective in stimulating hydrolysis of Cer followed by phosphatidic acid, phosphatidylethanolamine and phosphatidylglycerol, whereas phosphatidylcholine, lysophosphatidic acid and diacylglycerol were less effective. Interestingly, Staphylococcus aureus-derived lipids, which contain cardiolipin and phosphatidylglycerol as major lipid components, also strongly enhanced the hydrolysis of normal Cer, as well as the human skin-specific ω-hydroxyacyl Cer, by the enzyme in the absence of detergents. It was confirmed that several strains of P. aeruginosa, including AN17, secrete a significant amount of staphylolytic proteases to lyse S. aureus cells, resulting in the release of cardiolipin and phosphatidylglycerol. Since both P. aeruginosa and S. aureus are suspected of being present in microflora of atopic skin, we speculate that S. aureus-derived glycerophospholipids stimulate the hydrolysis of Cer in atopic skin by bacterial ceramidase.


FEBS Letters ◽  
1997 ◽  
Vol 409 (1) ◽  
pp. 29-32 ◽  
Author(s):  
Yoshikazu Suzuki ◽  
Takashi Shimizu ◽  
Hisayuki Morii ◽  
Masaru Tanokura

1991 ◽  
Vol 11 (10) ◽  
pp. 4903-4908
Author(s):  
J G Song ◽  
L M Pfeffer ◽  
D A Foster

Activating the protein-tyrosine kinase of v-Src in BALB/c 3T3 cells results in rapid increases in the intracellular second messenger, diacylglycerol (DAG). v-Src-induced increases in radiolabeled DAG were most readily detected when phospholipids were prelabeled with myristic acid, which is incorporated predominantly into phosphatidylcholine. Consistent with this observation, v-Src increased the level of intracellular choline. No increase in DAG was observed when cells were prelabeled with arachidonic acid, which is incorporated predominantly into phosphatidylinositol. Inhibiting phosphatidic acid (PA) phosphatase, which hydrolyzes PA to DAG, blocked v-Src-induced DAG production and enhanced PA production, implicating a type D phospholipase. Consistent with the involvement of a type D phospholipase, v-Src increased transphosphatidylation activity, which is characteristic of type D phospholipases. Thus, v-Src-induced increases in DAG most likely result from the activation of a type D phospholipase/PA phosphatase-mediated signaling pathway.


2020 ◽  
Vol 295 (10) ◽  
pp. 2932-2947 ◽  
Author(s):  
Chiaki Murakami ◽  
Fumi Hoshino ◽  
Hiromichi Sakai ◽  
Yasuhiro Hayashi ◽  
Atsushi Yamashita ◽  
...  

The δ isozyme of diacylglycerol kinase (DGKδ) plays critical roles in lipid signaling by converting diacylglycerol (DG) to phosphatidic acid (PA). We previously demonstrated that DGKδ preferably phosphorylates palmitic acid (16:0)- and/or palmitoleic acid (16:1)-containing DG molecular species, but not arachidonic acid (20:4)-containing DG species, which are recognized as DGK substrates derived from phosphatidylinositol turnover, in high glucose-stimulated myoblasts. However, little is known about the origin of these DG molecular species. DGKδ and two DG-generating enzymes, sphingomyelin synthase (SMS) 1 and SMS-related protein (SMSr), contain a sterile α motif domain (SAMD). In this study, we found that SMSr–SAMD, but not SMS1–SAMD, co-immunoprecipitates with DGKδ–SAMD. Full-length DGKδ co-precipitated with full-length SMSr more strongly than with SMS1. However, SAMD-deleted variants of SMSr and DGKδ interacted only weakly with full-length DGKδ and SMSr, respectively. These results strongly suggested that DGKδ interacts with SMSr through their respective SAMDs. To determine the functional outcomes of the relationship between DGKδ and SMSr, we used LC-MS/MS to investigate whether overexpression of DGKδ and/or SMSr in COS-7 cells alters the levels of PA species. We found that SMSr overexpression significantly enhances the production of 16:0- or 16:1-containing PA species such as 14:0/16:0-, 16:0/16:0-, 16:0/18:1-, and/or 16:1/18:1-PA in DGKδ-overexpressing COS-7 cells. Moreover, SMSr enhanced DGKδ activity via their SAMDs in vitro. Taken together, these results strongly suggest that SMSr is a candidate DG-providing enzyme upstream of DGKδ and that the two enzymes represent a new pathway independent of phosphatidylinositol turnover.


1990 ◽  
Vol 68 (2) ◽  
pp. 520-527 ◽  
Author(s):  
V. G. Mahadevappa ◽  
Frank Sicilia

In the present work we investigated the effect of serine esterase inhibitors such as 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate (NCDC) and phenylmethylsulfonyl fluoride (PMSF), as well as the effect of mepacrine on thrombin-induced mobilization of arachidonic acid (AA) in human platelets. The inhibitor NCDC (0.6 mM) completely abolished the thrombin-induced activation of phospholipase C, phospholipase A2, and transacylase enzymes, whereas the pretreatment of platelets with PMSF (2 mM) resulted in a highly selective inhibition of phospholipase A2 and transacylase activities, with no marked effect on thrombin-induced activation of phospholipase C. The thrombin-induced release of [3H]AA from phosphatidylcholine and phosphatidylinositol was reduced by 90 and 56%, respectively, in the presence of PMSF. This inhibitor also caused a parallel inhibition in the accumulation of [3H]AA (85%) with little effect on thrombin-induced formation of [3H]phosphatidic acid (5%), whereas mepacrine (0.4 mM) caused a selective inhibition of phospholipase A2 and transacylase activities with concomitant stimulation of [3H]phosphatidic acid formation in intact human platelets. These results demonstrate that NCDC and PMSF (serine esterase inhibitors) do not affect agonist-induced activation of phospholipases that mobilize arachidonic acid through a common site. Our results further demonstrate that the inhibition of [3H]AA release observed in the presence of NCDC, PMSF, and mepacrine is primarily due to their direct effects on enzyme activities, rather than due to their indirect effects through formation of complexes between inhibitors and membrane phospholipids. Based upon these results, we also conclude that the combined hydrolysis of phosphatidylcholine and phosphatidylinositol by phospholipase A2 serves as a major source for eicosanoid biosynthesis in thrombin-stimulated human platelets.Key words: deacylation, phospholipids, thrombin, platelets, phospholipase A2.


Sign in / Sign up

Export Citation Format

Share Document