scholarly journals Design of a Three Dimensional Physical Model of P‐glycoprotein

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
◽  
Shannon Colton ◽  
Tim Herman ◽  
Kurt Giles ◽  
Ben Koo ◽  
...  
Landslides ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 1145-1161 ◽  
Author(s):  
Gyeong-Bo Kim ◽  
Wei Cheng ◽  
Richards C. Sunny ◽  
Juan J. Horrillo ◽  
Brian C. McFall ◽  
...  

2012 ◽  
Vol 594-597 ◽  
pp. 1975-1978
Author(s):  
Hai Jing Zhao ◽  
Dan Xun Li ◽  
Xing Kui Wang

Aimed at the representative project which is protected by the downstream sediment storage dam, three dimensional flow velocity field in local scour area around the separate bridge pier via physical model test was studied. The influences of shaping the eroded pit caused by the velocities in different directions were analyzed. The distribution results of flow velocity field in local scour pit near the pier protected by the sediment storage dam, deduced from the paper, will provide references for the defensive design of bridge projects.


Author(s):  
Paolo De Girolamo ◽  
Tso-Ren Wu ◽  
Philip L.-F. Liu ◽  
Andrea Panizzo ◽  
Giorgio Bellotti ◽  
...  

2010 ◽  
Vol 29-32 ◽  
pp. 177-182 ◽  
Author(s):  
Long Wu

Consider the imperfectness of mass partition coefficient for a whole car in automotive theories, a vehicle physical model with fourteen degree of freedoms under vertical and lateral road excitations is adopted as research background in this paper. With the help of force analysis of sprung mass in three dimensional space and investigations on vertical, lateral, pitch, roll and yaw motions, the ration relations of dynamical coupling between a whole suspension and four quarter suspensions are deduced and achieved. The analytical results obtained in this paper develop the theoretical content of mass partition coefficient. It will be utilized to analyze, test and control among different car suspensions in the fields of vibration, handling and steering systems in future.


Robotica ◽  
2002 ◽  
Vol 20 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Xin-Jun Liu ◽  
Jinsong Wang ◽  
Feng Gao ◽  
Li-Ping Wang

This paper concerns the issue of mechanism design of a simplified 6-DOF 6-RUS parallel manipulator. The design of robotic mechanisms, especially for 6-DOF parallel manipulators, is an important and challenging problem in the field of robotics. This paper presents a design method for robotic mechanisms, which is based on the physical model of the solution space. The physical model of the solution space, which can transfer a multi-dimensional problem to a two or three-dimensional one, is a useful tool to obtain all kinds of performance atlases. In this paper, the physical model of the solution space for spatial 6-RUS (R stands for revolute joint, U universal joint and S spherical joint) parallel manipulators is established. The atlases of performances, such as workspace and global conditioning index, are plotted in the physical model of the solution space. The atlases are useful for the mechanism design of the 6-RUS parallel manipulators. The technique used in this paper can be applied to the design of other robots.


2014 ◽  
Vol 651-653 ◽  
pp. 858-861
Author(s):  
Guan Qiang Ruan ◽  
Jin Run Cheng

The turbo diesel SCR system has been researched and analyzed in this paper. By using software of CATIA, three-dimensional physical model of SCR system has been established, and with software of AVL-FIRE, the boundary conditions have been set, simulated and optimized. In the process of SCR system optimizing, it mainly optimized the pray angle. Compare the effects of processing NOx to obtain batter optimization results. At last the optimization results are compared by bench test, and the experimental results are quite consistent with simulation.


2017 ◽  
Vol 25 (02) ◽  
pp. 1750011 ◽  
Author(s):  
Xuan Quang Duong ◽  
Jae Dong Chung

A three-dimensional simulation of a compressor dehumidifier was conducted by applying a porous model for condenser and evaporator, and a moving reference frame for the fan. A physical model was simulated for the unit cell of the actual shape of a fin-tube, and the parameters of viscous resistance and initial resistance were obtained. With these values, the porous model showed close agreement with the physical model within a reasonable computation time. A uniform flow across the evaporator and the condenser is desirable for high performance of the dehumidifier. Surface averaged velocity, standard deviation of velocity, and uniformity were chosen as indicators of the design object. A case study showed that two factors, (i) reducing the space between the evaporator and the condenser and (ii) introducing a cover to reduce the by-passing air flow, have the strongest influence on the air distribution in this dehumidifier.


2011 ◽  
Vol 55 (8) ◽  
pp. 3838-3844 ◽  
Author(s):  
José M. Pérez-Victoria ◽  
Boris I. Bavchvarov ◽  
Iván R. Torrecillas ◽  
Marta Martínez-García ◽  
Carmen López-Martín ◽  
...  

ABSTRACTAlthough oral miltefosine represented an important therapeutic advance in the treatment of leishmaniasis, the appearance of resistance remains a serious threat. LMDR1/LABCB4, a P-glycoprotein-like transporter included in theLeishmaniaABC (ATP-binding cassette) family, was the first molecule shown to be involved in experimental miltefosine resistance. LMDR1 pumps drugs out of the parasite, thereby decreasing their intracellular accumulation. Sitamaquine, another promising oral drug for leishmaniasis, is currently in phase 2b clinical trials. The physicochemical features of this drug suggested to us that it could be considered for use as an LMDR1 inhibitor. Indeed, we report herein that nonleishmanicidal concentrations of sitamaquine reverse miltefosine resistance in a multidrug resistanceLeishmania tropicaline that overexpresses LMDR1. This reversal effect is due to modulation of the LMDR1-mediated efflux of miltefosine. In addition, sitamaquine is not a substrate of LMDR1, as this transporter does not affect sitamaquine accumulation or sensitivity in the parasite. Likewise, we show that ketoconazole, another oral leishmanicidal drug known to interact with ABC transporters, is also able to reverse LMDR1-mediated miltefosine resistance, although with a lower efficiency than sitamaquine. Molecular docking on a three-dimensional homology model of LMDR1 showed different preferential binding sites for each substrate-inhibitor pair, thus explaining this different behavior. Finally, we show that sitamaquine is also able to modulate the antimony resistance mediated by MRPA/LABCC3, another ABC transporter involved in experimental and clinical antimony resistance in this parasite. Taken together, these data suggest that the combination of sitamaquine with miltefosine or antimony could avoid the appearance of resistance mediated by these membrane transporters inLeishmania.


Sign in / Sign up

Export Citation Format

Share Document