scholarly journals Hiding in Plain Sight: Elucidation of mechanisms underlying metastatic melanoma immune escape via suppression of Major Histocompatability Complex (MHC) II through dysregulation of the JAK/STAT pathway

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
joDi Lynn Osborn ◽  
Susanna F Greer
2018 ◽  
Vol 18 (2) ◽  
pp. 166-181 ◽  
Author(s):  
Antonio Marra ◽  
Cristina R. Ferrone ◽  
Celeste Fusciello ◽  
Giosue Scognamiglio ◽  
Soldano Ferrone ◽  
...  

Melanoma is an aggressive form of skin cancer characterized by poor prognosis and high mortality. The development of targeted agents based on the discovery of driver mutations as well as the implementation of checkpoint inhibitor-based immunotherapy represents a major breakthrough in the treatment of metastatic melanoma. However, in both cases the development of drug resistance and immune escape mechanisms as well as the lack of predictive biomarkers limits their extraordinary clinical efficacy. In this article, we summarize the available therapeutic options for patients with metastatic melanoma, outline the mechanisms implicated in the resistance to both targeted agents and immunotherapy, discuss potential predictive biomarkers and outline future therapeutic approaches under investigation.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4722
Author(s):  
Amanda A. van Vliet ◽  
Anna-Maria Georgoudaki ◽  
Monica Raimo ◽  
Tanja D. de Gruijl ◽  
Jan Spanholtz

Adoptive cell therapy (ACT) represents a promising alternative approach for patients with treatment-resistant metastatic melanoma. Lately, tumor infiltrating lymphocyte (TIL) therapy and chimeric antigen receptor (CAR)-T cell therapy have shown improved clinical outcome, compared to conventional chemotherapy or immunotherapy. Nevertheless, they are limited by immune escape of the tumor, cytokine release syndrome, and manufacturing challenges of autologous therapies. Conversely, the clinical use of Natural Killer (NK) cells has demonstrated a favorable clinical safety profile with minimal toxicities, providing an encouraging treatment alternative. Unlike T cells, NK cells are activated, amongst other mechanisms, by the downregulation of HLA class I molecules, thereby overcoming the hurdle of tumor immune escape. However, impairment of NK cell function has been observed in melanoma patients, resulting in deteriorated natural defense. To overcome this limitation, “activated” autologous or allogeneic NK cells have been infused into melanoma patients in early clinical trials, showing encouraging clinical benefit. Furthermore, as several NK cell-based therapeutics are being developed for different cancers, an emerging variety of approaches to increase migration and infiltration of adoptively transferred NK cells towards solid tumors is under preclinical investigation. These developments point to adoptive NK cell therapy as a highly promising treatment for metastatic melanoma in the future.


2019 ◽  
Vol 15 (2) ◽  
pp. 110-119
Author(s):  
Emilio Francesco Giunta ◽  
Giuseppe Argenziano ◽  
Gabriella Brancaccio ◽  
Erika Martinelli ◽  
Fortunato Ciardiello ◽  
...  

: Metastatic melanoma treatment has dramatically changed in the last few years, having a breakthrough with the introduction of targeted agents and immunotherapy. PD-1/PD-L1 pathway is one of the physiologic mechanisms of peripheral immune tolerance, but it also represents a mechanism of tumor immune escape. PD-1/PD-L1 inhibitors represent new immune-checkpoint drugs currently used in metastatic melanoma treatment. : Resistance to PD-1/PD-L1 axis blockade, which is the main cause of therapeutic failure during therapeutic use of these drugs, could be linked to several mechanism of immune escape. In fact, other inhibitory receptor such as CTLA-4, LAG-3, TIM-3 and TIGIT might be co-expressed on T cells, deleting the effect of anti-PD-1/PD-L1; overexpression of the enzyme IDO could cause immunosuppression through the depletion of tryptophan in the tumor microenvironment; defective c ostimulation (through reduced activity of 4-1BB and OX40 receptors) could result in T-cell energy. : Combination of anti-PD-1/PD-L1 with drugs targeting inhibitory or costimulatory receptors, intracellular pathways, enzymes or neoangiogenesis could be a possible strategy to overcome resistance to single PD-1/PD-L1 blockade. Clinical trials evaluating combination therapies have already showed interesting results, although most of them are still on going.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 742 ◽  
Author(s):  
Rita Cabrita ◽  
Shamik Mitra ◽  
Adriana Sanna ◽  
Henrik Ekedahl ◽  
Kristina Lövgren ◽  
...  

Checkpoint blockade therapies have changed the clinical management of metastatic melanoma patients considerably, showing survival benefits. Despite the clinical success, not all patients respond to treatment or they develop resistance. Although there are several treatment predictive biomarkers, understanding therapy resistance and the mechanisms of tumor immune evasion is crucial to increase the frequency of patients benefiting from treatment. The PTEN gene is thought to promote immune evasion and is frequently mutated in cancer and melanoma. Another feature of melanoma tumors that may affect the capacity of escaping T-cell recognition is melanoma cell dedifferentiation characterized by decreased expression of the microphtalmia-associated transcription factor (MITF) gene. In this study, we have explored the role of PTEN in prognosis, therapy response, and immune escape in the context of MITF expression using immunostaining and genomic data from a large cohort of metastatic melanoma. We confirmed in our cohort that PTEN alterations promote immune evasion highlighted by decreased frequency of T-cell infiltration in such tumors, resulting in a worse patient survival. More importantly, our results suggest that dedifferentiated PTEN negative melanoma tumors have poor patient outcome, no T-cell infiltration, and transcriptional properties rendering them resistant to targeted- and immuno-therapy.


2021 ◽  
Author(s):  
Franz Josef Obermair ◽  
Florian Renoux ◽  
Sebastian Heer ◽  
Chloe Lee ◽  
Nastassja Cereghetti ◽  
...  

Understanding the mechanisms of immune evasion is critical for formulating an effective response to global threats like SARS-CoV2. We have fully decoded the immune synapses for multiple TCRs from acute patients, including cognate peptides and the presenting HLA alleles. Furthermore, using a newly developed mammalian epitope display platform (MEDi), we determined that several mutations present in viral isolates currently expanding across the globe, resulted in reduced presentation by multiple HLA class II alleles, while some increased presentation, suggesting immune evasion based on shifting MHC-II peptide presentation landscapes. In support, we found that one of the mutations present in B1.1.7 viral strain could cause escape from CD4 T cell recognition in this way. Given the importance of understanding such mechanisms more broadly, we used MEDi to generate a comprehensive analysis of the presentability of all SARS-CoV-2 peptides in the context of multiple common HLA class II molecules. Unlike other strategies, our approach is sensitive and scalable, providing an unbiased and affordable high-resolution map of peptide presentation capacity for any MHC-II allele. Such information is essential to provide insight into T cell immunity across distinct HLA haplotypes across geographic and ethnic populations. This knowledge is critical for the development of effective T cell therapeutics not just against COVID-19, but any disease.


2013 ◽  
Vol 134 (1) ◽  
pp. 102-113 ◽  
Author(s):  
Ana B. del Campo ◽  
Jon Amund Kyte ◽  
Javier Carretero ◽  
Svitlana Zinchencko ◽  
Rosa Méndez ◽  
...  

2021 ◽  
Author(s):  
Kenneth Eagle ◽  
Taku Harada ◽  
Jeremie Kalfon ◽  
Monika Perez ◽  
Yaser Heshmati ◽  
...  

Relapse of acute myeloid leukemia (AML) after allogeneic bone marrow transplantation (alloSCT) has been linked to immune evasion due to reduced expression of major histocompatibility complex class II (MHC-II) proteins through unknown mechanisms. We developed CORENODE, a computational algorithm for genome-wide transcription network decomposition, that identified the transcription factors (TFs) IRF8 and MEF2C as positive regulators and MYB and MEIS1 as negative regulators of MHC-II expression in AML cells. We show that reduced MHC-II expression at relapse is transcriptionally driven by combinatorial changes in the levels of these TFs, acting both independently and through the MHC-II coactivator CIITA. Beyond the MHC-II genes, MYB and IRF8 antagonistically regulate a broad genetic program responsible for cytokine signaling and T-cell stimulation that displays reduced expression at relapse. A small number of cells with altered TF levels and silenced MHC-II expression are present at the time of initial leukemia diagnosis, likely contributing to eventual relapse. Our findings reveal an adaptive transcriptional mechanism of AML evolution after allogenic transplantation whereby combinatorial fluctuations of TF levels under immune pressure result in selection of cells with a silenced T-cell stimulation program.


2022 ◽  
Vol 8 ◽  
Author(s):  
Sara La Manna ◽  
Ilaria De Benedictis ◽  
Daniela Marasco

The JAK-STAT pathway is a crucial cellular signaling cascade, including an intricate network of Protein–protein interactions (PPIs) responsible for its regulation. It mediates the activities of several cytokines, interferons, and growth factors and transduces extracellular signals into transcriptional programs to regulate cell growth and differentiation. It is essential for the development and function of both innate and adaptive immunities, and its aberrant deregulation was highlighted in neuroinflammatory diseases and in crucial mechanisms for tumor cell recognition and tumor-induced immune escape. For its involvement in a multitude of biological processes, it can be considered a valuable target for the development of drugs even if a specific focus on possible side effects associated with its inhibition is required. Herein, we review the possibilities to target JAK–STAT by focusing on its natural inhibitors as the suppressor of cytokine signaling (SOCS) proteins. This protein family is a crucial checkpoint inhibitor in immune homeostasis and a valuable target in immunotherapeutic approaches to cancer and immune deficiency disorders.


2016 ◽  
Vol 34 (15_suppl) ◽  
pp. e14544-e14544
Author(s):  
Maria Frances Coakley ◽  
David Cormican ◽  
Cynthia Heffron ◽  
Richard Martin Bambury ◽  
Deirdre O'Mahony ◽  
...  

2021 ◽  
Author(s):  
Xianhui Ruan ◽  
Jiaoyu Yi ◽  
Linfei Hu ◽  
Jingtai Zhi ◽  
Yu Zeng ◽  
...  

Increasing body of recent studies determining the expression of tumor-specific major histocompatibility complex (MHC) class II protein support its potential role in several malignancies but little is known in human medullary thyroid cancer (MTC). Here we report the expression of MHC-II and its clinicopathologic and prognostic relevance in MTC patients. Immunohistochemistry staining revealed a significant reduction in tumor cell specific MHC-II expression in a higher AJCC stage and its poor prognostic correlation with human MTC development. Further statistical analysis identified the low MHC-II expression as a significant and independent risk factor for MTC recurrence and patient survival. Moreover, in vitro studies showed that the MHC-II expression was remarkably increased by RET inhibitors, which were prescribed to treat advanced MTC. Similarly, inhibitors blocking the MAPK/ERK and AKT/mTOR pathways also augmented MHC-II expression, suggesting their implications in RET-MHC-II signaling axis. Importantly, in vitro assays manifested enhanced peripheral blood leukocytes-mediated cytotoxicity in MTC cells treated with RET inhibitors, which were partially alleviated by HLA knock-down. Together, our study demonstrates that low MHC-II expression levels may serve as a prognostic biomarker for aggressive diseases in MTC patients and indicates that RET activation may promote MTC immune escape through down-regulating MHC-II expression.


Sign in / Sign up

Export Citation Format

Share Document