scholarly journals Antioxidant effect of phycobiliproteins on proteins and DNA exposed to a reactive oxygen species generating system.

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Roxana Olvera‐Ramirez ◽  
Alan Estrada_Perez ◽  
Raul Alcalde_Vazquez ◽  
Jose Luis Muñoz
2012 ◽  
Vol 1 (1) ◽  
pp. 18
Author(s):  
Amrit Kaur Bansal ◽  
Ranjna Sundhey Cheema ◽  
Vinod Kumar Gandotra

The aim of this paper was to investigate the antioxidant effect of Mn2+ (200 mM) on the sperm capacitation and acrosome reaction of fresh and chilled cattle bull semen. It has been found that Mn2+ supplementation improves (P≤0.05) the motility at 0, 2, 4 and 6 h of incubation. MDA (malondialdehyde), end product of lipid peroxidation, decreases significantly (P≤0.05) with the supplementation of manganese at 0- and 6-hr of incubation both in fresh and chilled semen. Manganese also increases acrosome reaction significantly (P≤0.05) both in fresh and chilled semen at 0, 4 and 6 h of incubation. Therefore, our findings suggest the role of Mn2+supplementation in improving the quality of cattle bull semen by its scavenging property<em> i.e.</em> reduction in the production of reactive oxygen species during its storage at 4°C or incubation at 37°C for capacitation.


2016 ◽  
Vol 7 (10) ◽  
pp. 4422-4431 ◽  
Author(s):  
Akshatha Hosahalli Srikanta ◽  
Anbarasu Kumar ◽  
Shinde Vijay Sukhdeo ◽  
Muthukumar Serva Peddha ◽  
Vijayalakshmi Govindaswamy

Polyphenols act by scavenging reactive oxygen species during oxidative stress and hence are useful in the treatment of metabolic disorders including diabetes.


2008 ◽  
Vol 3 (4) ◽  
pp. 1934578X0800300
Author(s):  
Manuel Jiménez-Estrada ◽  
Ricardo Reyes-Chilpa ◽  
Arturo Navarro-Ocaña ◽  
Daniel Arrieta-Báez

To analyze the antioxidant effects of cacalol we determined its reactivity with different reactive oxygen species (ROS). Cacalol gave rise to cacalone by a specific site reaction with a hydroxyl radical. Singlet oxygen reacted only with the double bond of the furan ring, causing its rupture. On the other hand, ozone reacted with all double bonds in cacalol affording 2-methyl-hexanedioic acid as an end product. No reaction was observed with either superoxide or hydrogen peroxide. The potential antioxidant effect of cacalol as a scavenger of hydroxyl radical and singlet oxygen could be related to its function in the plant roots.


2016 ◽  
Vol 11 (12) ◽  
pp. e1247136 ◽  
Author(s):  
Navdeep Kaur ◽  
Kamal Kirat ◽  
Shivani Saini ◽  
Isha Sharma ◽  
Pascal Gantet ◽  
...  

2008 ◽  
Vol 1 ◽  
pp. BCI.S1007 ◽  
Author(s):  
F. Gagné ◽  
C. André ◽  
C. Blaise

The purpose of this study was to examine the function of metallothioneins (MT) in respect to the mobilization of heavy metals and superoxide anion (O2–) scavenging in aquatic organisms. Using an O2– generating system, liberation of free zinc from native and zinc MT (Zn-MT) was measured in vitro. Addition of the O2– generating system and H2O2 readily increased the di- and trimeric forms of MT as determined by gel electrophoresis analysis. To determine whether the proportion of oxidized MT could change in contaminated environments, metal-contaminated Mya arenaria clams were collected from a harbour in the St. Lawrence Estuary. The levels of labile zinc, superoxide dismutase (O2– scavenging enzyme), lipid peroxidation (LPO) and the oxidized/metallic form of MT were determined in the digestive gland. The results revealed that the induction of total MT levels was the result of increased oxidized MT at the expense of the reduced or metallic form of MT. Both superoxide dismutase (SOD) and labile zinc (Zn) levels were induced and they were significantly correlated with the oxidized form of MT, but not the metallic form, in feral clam populations. We concluded that the level of total MT was related to Zn mobility and the activation of antioxidant mechanisms such as SOD, and corresponded to the levels of oxidized MT. The metallic form of MT was negatively associated with Zn mobility but positively associated with oxidative damage such as LPO. Overall, the oxidized fraction of MT appeared to be more closely related to detoxification, while the metallic form of MT was associated with metal mobility and toxicity via oxidative damage. The protective effect of MT during heavy-metal contamination depends on the availability of metals and on its capacity to sequester reactive oxygen species.


Sign in / Sign up

Export Citation Format

Share Document