scholarly journals Eicosapentaenoic Acid Prevents Interstitial Cardiac Fibrosis in a Mouse Model of Hypertensive Heart Disease

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Julie Eclov ◽  
Gregory Shearer ◽  
Timothy O'Connell
2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Bidur Bhandary ◽  
Qinghang Meng ◽  
Hanna Osinska ◽  
Kritton Shay-Winkler ◽  
James Gulick ◽  
...  

Introduction: Transforming Growth Factor Beta (TGFβ) is an important cytokine in mediating the fibrogenic response and, in particular, cardiac fibrosis. Extensive fibrosis accompanies the cardiac remodeling that occurs during development of the protein conformation-based disease caused by cardiomyocyte-specific expression of a mutant, small, heat shock-like protein and chaperone, aB crystallin (CryABR120G). During the onset of fibrosis, fibroblasts are activated to the so-called “myofibroblast” state and TGFβ binding is thought to mediate an essential signaling pathway underlying this process. Our central hypothesis is that TGFβ signaling processes that result in significant cardiac fibrosis in a mouse model of proteotoxic heart disease are mediated by cardiac fibroblasts, rather than cardiomyocytes. Here, we have partially ablated TGFβ signaling only in cardiac myofibroblasts to observe if cardiac fibrosis is reduced. Aims and Methods: The objective of this study was to understand the contributions of fibroblast-derived TGFβ signaling to the development of cardiac fibrosis in a proteotoxic mouse model that results in significant cardiac fibrosis. To test the hypothesis we partially deleted the myofibroblast specific canonical and non-canonical signaling by crossing CryAB R120G mice with Tgfbr1 or Tgfbr2 floxed mice. The double transgene containing mice were further crossed with activated myofibroblast specific Cre mice in which Cre expression was driven off the periostin promoter. Echocardiography, Masson’s Trichome staining, PCR arrays, IHC and western blots were performed to characterize the fibrotic progression in CryAB R120G transgenic mice. Results: We observed that myofibroblast-targeted partial knockdown of Tgf βr1 signaling prolonged survival, modestly reducing fibrosis and improving cardiac function . Similarly, Tgf βr2 partial knockdown prolonged survival, modestly reducing fibrosis without improving cardiac function during fibrosis development in CryAB R120G mice. Conclusion: These findings suggest that, in a model of proteotoxic heart disease, myofibroblast based TGFβ signaling in the heart may contribute to cardiac hypertrophy/dysfunction but cannot account entirely for the fibrotic response.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Louise Thisted ◽  
Claudia Correia ◽  
Karin Jennbacken ◽  
Maria Wagberg ◽  
Franziska Wichern ◽  
...  

Fibrosis is the hallmark of hypertensive heart disease and heart failure with preserved ejection fraction. Perivascular fibrosis impairs vascular function while interstitial fibrosis leads to compromised cardiac contractility. How these fibrosis types are represented in mouse models of hypertensive heart disease and to what extent the transcriptional signatures of cardiac fibrosis are defined by their location is unknown. Mice were dosed over 4 weeks with angiotensin II (AngII) alone or together with α 1 -adrenergic agonist phenylephrine (PE) and were characterized by echocardiography, light sheet imaging and fibrosis histology. While both groups developed systolic and diastolic dysfunction, hypertrophy and perivascular fibrosis, co-administration of PE resulted in a more severe disease phenotype and prevalent interstitial fibrosis, highlighting the benefits of this model in preclinical research. High-precision spatial transcriptomics based on laser capture microdissected perivascular and interstitial fibrotic areas revealed activation of distinct pro-fibrotic as well as cardioprotective pathways in the AngII+PE infusion model. Perivascular and interstitial fibrosis showed remarkable differences in global gene expression signatures, as demonstrated by high expression of osteochondrogenic genes and markers of secretory fibroblasts in perivascular fibrosis. A limited number of upregulated genes is shared between the fibrosis locations. These data collectively show the suitability of mouse models of hypertensive heart disease to study cardiac fibrosis and demonstrate how progression of fibrosis in mice is closely coupled to deteriorating cardiac dysfunction associated with highly distinct molecular signatures of perivascular and interstitial fibrosis.


2017 ◽  
Vol 30 (11) ◽  
pp. 1049-1052 ◽  
Author(s):  
Karl T Weber ◽  
Yao Sun ◽  
Ivan C Gerling ◽  
Ramareddy V Guntaka

2012 ◽  
Vol 303 (6) ◽  
pp. H703-H711 ◽  
Author(s):  
Xiangbin Xu ◽  
Fan Ding ◽  
Jinjiang Pang ◽  
Xue Gao ◽  
Rong-Kun Xu ◽  
...  

Cardiac fibrosis is a hallmark of heart disease and plays a vital role in cardiac remodeling during heart diseases, including hypertensive heart disease. Hexarelin is one of a series of synthetic growth hormone secretagogues (GHSs) possessing a variety of cardiovascular effects via action on GHS receptors (GHS-Rs). However, the role of hexarelin in cardiac fibrosis in vivo has not yet been investigated. In the present study, spontaneously hypertensive rats (SHRs) were treated with hexarelin alone or in combination with a GHS-R antagonist for 5 wk from an age of 16 wk. Hexarelin treatment significantly reduced cardiac fibrosis in SHRs by decreasing interstitial and perivascular myocardial collagen deposition and myocardial hydroxyproline content and reducing mRNA and protein expression of collagen I and III in SHR hearts. Hexarelin treatment also increased matrix metalloproteinase (MMP)-2 and MMP-9 activities and decreased myocardial mRNA expression of tissue inhibitor of metalloproteinase (TIMP)-1 in SHRs. In addition, hexarelin treatment significantly attenuated left ventricular (LV) hypertrophy, LV diastolic dysfunction, and high blood pressure in SHRs. The effect of hexarelin on cardiac fibrosis, blood pressure, and cardiac function was mediated by its receptor, GHS-R, since a selective GHS-R antagonist abolished these effects and expression of GHS-Rs was upregulated by hexarelin treatment. In summary, our data demonstrate that hexarelin reduces cardiac fibrosis in SHRs, perhaps by decreasing collagen synthesis and accelerating collagen degradation via regulation of MMPs/TIMP. Hexarelin-reduced systolic blood pressure may also contribute to this reduced cardiac fibrosis in SHRs. The present findings provided novel insights and underscore the therapeutic potential of hexarelin as an antifibrotic agent for the treatment of cardiac fibrosis.


Sign in / Sign up

Export Citation Format

Share Document