scholarly journals Intermittent Fasting of High‐Fat Diet Increases Hypothalamic Norepinephrine and Improves Metabolic Parameters in Obese Mice

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Juliet Gotthardt ◽  
Jessica Verpeut ◽  
Bryn Yeomans ◽  
Troy Roepke ◽  
Nicholas Bello
2014 ◽  
Vol 9 (10) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Qing Liu ◽  
Sang Hyun Kim ◽  
Seon Beom Kim ◽  
Yang Hee Jo ◽  
Eun Sil Kim ◽  
...  

The effect of the extract of Ligustrum lucidum fruits (LFE) and its major secoiridoid (LFS), (8- E)-nüzhenide, on obesity was investigated using high fat-diet (HFD)-induced C58BL/6J obese mice. LFE and LFS were administered at the doses of 300 mg/kg and 30 mg/kg, respectively, for 6 weeks. The anti-obesity activity was evaluated by measuring body weight, epididymal fat and metabolic plasma parameters. On Day 42, the body weight of the LFS-treated group was significantly lower compared with the HFD-treated group. Body weight gain was also reduced by 23.2% and 32.0% in the LFE- and LFS-treated groups, respectively, compared with the HFD group. In addition, the weight of the epididymal fat in the mice was significantly decreased in the HFD+LFS group. The food efficiency ratios (FERs) of the HFD+LFE and HFD+LFS groups were also lower compared with the HFD group with the same food intake. Metabolic parameters that had increased in the HFD group were decreased in the HFD+LFE and HFD+LFS groups. In particular, the increased triglyceride values were significantly reduced in the HFD+LFS group. These results show that treatment with LFE and LFS decreased HFD-induced obesity, mainly by improving metabolic parameters, such as fats and triglycerides. Therefore, LFE and LFS have potential benefits in regulation of obesity.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 251
Author(s):  
Zujie Xu ◽  
Ying Qin ◽  
Binbin Lv ◽  
Zhenjun Tian ◽  
Bing Zhang

Intermittent fasting (IF) plays an essential role in improving lipid metabolism disorders caused by metabolic cardiomyopathy. Growing evidence revealed that N6-methyladenosine (m6A) RNA methylation is related to obesity and lipid metabolic. Our study aimed to assess the beneficial effects of IF on lipid deposition, apoptosis, and m6A methylation in high-fat diet (HFD)-induced obesity cardiomyopathy. Male C57BL/6J mice were fed a normal diet (ND) or HFD ad libitum for 13 weeks, after which time a subgroup of HFD mice were subjected to IF for 24 h and fed HFD in the other day for 8 weeks. We found that IF intervention significantly improved cardiac functional and structural impairment and serum lipid metabolic disorder induced by HFD. Furthermore, IF intervention decreased the mRNA levels of the fatty acid uptake genes of FABP1, FATP1, and CD36 and the fatty acid synthesis genes of SREBF1, FAS, and ACCα and increased the mRNA levels of the fatty acid catabolism genes of ATGL, HSL, LAL, and LPL in cardiac tissueof HFD-induced obese mice. TUNEL-positive cells, Bax/Bcl-2 ratio, and Cleaved Caspase-3 protein expression in HFD-induced obese mice hearts was down-regulated by IF intervention. In addition, IF intervention decreased the m6A methylation levels and METTL3 expression and increased FTO expression in HFD-induced obesity cardiomyopathy. In conclusion, our findings demonstrate that IF attenuated cardiac lipid deposition and apoptosis, as well as improved cardiac functional and structural impairment in HFD-induced obesity cardiomyopathy, by a mechanism associated with decreased m6A RNA methylation levels.


2021 ◽  
Vol 9 (9) ◽  
pp. 1908
Author(s):  
Ju Kyoung Oh ◽  
Robie Vasquez ◽  
In-Chan Hwang ◽  
Ye Na Oh ◽  
Sang Hoon Kim ◽  
...  

The aim of the presented study was to investigate the synbiotic effects of L. rhamnosus 4B15 and C. tricuspidata extract administration on the gut microbiota and obesity-associated metabolic parameters in diet-induced obese mice. Thirty-one 6-week-old male C57BL/N6 mice were divided into five diet groups: normal diet (ND, n = 7) group; high-fat diet (HFD, n = 6) group; probiotic (PRO, n = 5) group; prebiotic (PRE, n = 7) group; and synbiotic (SYN, n = 6) group. After 10 weeks, the percent of fat mass, serum triglyceride, and ALT levels were significantly reduced in SYN-fed obese mice, compared with other treatments. SYN treatment also modulated the abundance of Desulfovibrio, Dorea, Adlercreutzia, Allobaculum, Coprococcus, unclassified Clostridiaceae, Lactobacillus, Helicobacter, Flexispira, Odoribacter, Ruminococcus, unclassified Erysipelotrichaceae, and unclassified Desulfovibrionaceae. These taxa showed a strong correlation with obesity-associated indices. Lastly, the SYN-supplemented diet upregulated metabolic pathways known to improve metabolic health. Further investigations are needed to understand the mechanisms driving the synbiotic effect of C. tricuspidata and L. rhamnosus 4B15.


Obesity ◽  
2012 ◽  
Author(s):  
Gong-Rak Lee ◽  
Mi Kyung Shin ◽  
Dong-Joon Yoon ◽  
Ah-Ram Kim ◽  
Rina Yu ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
E Changkyun Park ◽  
SY Lee ◽  
SH Yun ◽  
WY Kim ◽  
Y Yi ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 287-LB
Author(s):  
HYE-JIN LEE ◽  
MUN-GYU SONG ◽  
NA-HEE HA ◽  
BO-YEONG JIN ◽  
SANG-HYUN CHOI ◽  
...  

2012 ◽  
Vol 41 (12) ◽  
pp. 1708-1715 ◽  
Author(s):  
Mi-Ae Lee ◽  
Jin-Kyung Park ◽  
Mi-Hyang Um ◽  
Jung-Woo Jeon ◽  
Jung-Min Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document