Effects of Halothane and Isoflurane on Carbon Monoxide-induced Relaxations in the Rat Aorta

1996 ◽  
Vol 85 (2) ◽  
pp. 347-354 ◽  
Author(s):  
Ming Jing ◽  
Saiid Bina ◽  
Ajay Verma ◽  
Jayne L. Hart ◽  
Sheila M. Muldoon

Background Halothane and isoflurane previously were reported to attenuate endothelium-derived relaxing factor/nitric oxide-mediated vasodilation and cyclic guanosine monophosphate (cGMP) formation in isolated rat aortic rings. Carbon monoxide has many chemical and physiologic similarities to nitric oxide. This study was designed to investigate the effects of halothane and isoflurane on carbon monoxide-induced relaxations and cGMP formation in the isolated rat aorta. Methods Isometric tension was recorded continuously from endothelium denuded rat aortic rings suspended in Krebs-filled organ baths. Rings precontracted with submaximal concentrations of norepinephrine were exposed to cumulative concentrations of carbon monoxide (26-176 microM). This procedure was repeated three times, with anesthetics delivered 10 min before the second procedure. Carbon monoxide responses of rings contracted with the same concentration of norepinephrine (10(-6) M and 2 x 10(-6) M) used in the anesthetic-exposed preparations also were examined. The concentrations of cGMP were determined in denuded rings using radioimmunoassay. The rings were treated with carbon monoxide (176 microM, 30 s) alone, or carbon monoxide after a 10-min incubation with halothane (0.34 mM or 0.72 mM). To determine whether the sequence of anesthetic delivery influenced results, vascular rings pretreated with halothane were compared with nonpretreated rings. Results Carbon monoxide (26-176 microM) caused a dose-dependent reduction of norepinephrine-induced tension, with a maximal relaxation of 1.51 +/- 0.07 g (85 +/- 7% of norepinephrine-induced contraction). Halothane (0.34 mM and 0.72 mM) significantly attenuated the carbon monoxide-induced relaxations, but only the highest concentration of isoflurane (0.53 mM) significantly attenuated the carbon monoxide-induced relaxations. Carbon monoxide (176 microM) significantly increased cGMP content (+88.1 +/- 7.1%) and preincubation of the aortic rings with halothane (0.34 mM and 0.72 mM) inhibited this increase (-70.7 +/- 6.8% and -108.1 +/- 10.6%, respectively). When aortic rings and carbon monoxide were added simultaneously to Krebs solution equilibrated with halothane (0.72 mM), no inhibition of cGMP formation occurred. Conclusion Carbon monoxide-induced endothelium-independent relaxations of rat aortic rings were decreased by clinically relevant concentrations of halothane and isoflurane. The carbon monoxide-induced elevations of cGMP were attenuated by halothane only when the anesthetic was incubated with aortic rings before carbon monoxide treatment. The possible clinical significance of the actions of the anesthetics on this endogenous vasodilator is yet to be determined.

2021 ◽  
Vol 22 (7) ◽  
pp. 3309
Author(s):  
Soo Hee Lee ◽  
Seong-Ho Ok ◽  
Seung Hyun Ahn ◽  
Hyun-Jin Kim ◽  
Sung Il Bae ◽  
...  

This study aimed to examine the effect of lipid emulsion (LE) on the vasoconstriction induced by dexmedetomidine (DMT) in the isolated rat aorta and elucidate the associated cellular mechanism. The effect of LE, NW-nitro-L-arginine methyl ester (L-NAME), and methyl-β-cyclodextrin (MβCD) on the DMT-induced contraction was examined. We investigated the effect of LE on the DMT-induced cyclic guanosine monophosphate (cGMP) formation and DMT concentration. The effect of DMT, LE, 4-Amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine,4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), and rauwolscine on the phosphorylation of endothelial nitric oxide synthase (eNOS), caveolin-1, and Src kinase was examined in the human umbilical vein endothelial cells. L-NAME, MβCD, and LE (1%, standardized mean difference (SMD): 2.517) increased the DMT-induced contraction in the endothelium-intact rat aorta. LE (1%) decreased the DMT (10−6 M) concentration (SMD: −6.795) and DMT-induced cGMP formation (SMD: −2.132). LE (1%) reversed the DMT-induced eNOS (Ser1177 and Thr496) phosphorylation. PP2 inhibited caveolin-1 and eNOS phosphorylation induced by DMT. DMT increased the Src kinase phosphorylation. Thus, LE (1%) enhanced the DMT-induced contraction by inhibition of NO synthesis, which may be caused by the decreased DMT concentration. DMT-induced NO synthesis may be caused by the increased eNOS (Ser1177) phosphorylation and decreased eNOS (Thr495) phosphorylation potentially mediated by Src kinase-induced caveolin-1 phosphorylation.


2011 ◽  
Vol 89 (7) ◽  
pp. 467-476 ◽  
Author(s):  
Ji Seok Baik ◽  
Ju-Tae Sohn ◽  
Seong-Ho Ok ◽  
Jae-Gak Kim ◽  
Hui-Jin Sung ◽  
...  

Levobupivacaine is a long-acting local anesthetic that intrinsically produces vasoconstriction in isolated vessels. The goals of this study were to investigate the calcium-dependent mechanism underlying levobupivacaine-induced contraction of isolated rat aorta in vitro and to elucidate the pathway responsible for the endothelium-dependent attenuation of levobupivacaine-induced contraction. Isolated rat aortic rings were suspended to record isometric tension. Cumulative levobupivacaine concentration–response curves were generated in either the presence or absence of the antagonists verapamil, nifedipine, SKF-96365, 2-aminoethoxydiphenylborate, Gd3+, NW-nitro-l-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and methylene blue, either alone or in combination. Verapamil, nifedipine, SKF-96365, 2-aminoethoxydiphenylborate, low calcium concentrations, and calcium-free Krebs solution attenuated levobupivacaine-induced contraction. Gd3+ had no effect on levobupivacaine-induced contraction. Levobupivacaine increased intracellular calcium levels in vascular smooth muscle cells. L-NAME, ODQ, and methylene blue increased levobupivacaine-induced contraction in endothelium-intact aorta. SKF-96365 attenuated calcium-induced contraction in a previously calcium-free isotonic depolarizing solution containing 100 mmol/L KCl. Levobupivacaine-induced contraction of rat aortic smooth muscle is mediated primarily by calcium influx from the extracellular space mainly via voltage-operated calcium channels and, in part, by inositol 1,4,5-trisphosphate receptor-mediated release of calcium from the sarcoplasmic reticulum. The nitric oxide – cyclic guanosine monophosphate pathway is involved in the endothelium-dependent attenuation of levobupivacaine-induced contraction.


2020 ◽  
Vol 39 (8) ◽  
pp. 1108-1117
Author(s):  
Q Zhang ◽  
W Lyu ◽  
M Yu ◽  
Y Niu

Sulfur dioxide (SO2) is a common exogenous atmospheric pollutant. Studies have shown that SO2 can cause vasodilation as a gas signaling molecule, but the specific signaling pathways are not well understood. This study aimed to explore the underlying mechanism behind the effects of SO2 on vasodilation of isolated rat aorta. The results showed that when the dose of SO2 was 30 μM, the vasodilation of endothelium-intact rings was partially suppressed by LY294002 and NG-nitro-l-arginine methyl ester, and the protein levels of phosphoinositide 3-kinase (PI3K), p-Akt, and p-endothelial nitric oxide synthase ( p-eNOS) were significantly increased. When the dose of SO2 was 300 μM or 1500 μM, the vasodilation of endothelium-denuded rings did not change after application of the inhibitor, but the protein levels of PI3K, p-Akt, and p-eNOS were significantly decreased, and the activity of NOS and the level of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) were significantly increased. We speculate that the mechanism of SO2-induced vasodilatation likely involved the endothelial PI3K/Akt/eNOS and NO/cGMP signal pathways. In addition, at the concentration of 1500 μM, SO2 markedly increased the level of caspase-3 and caspase-9. The results suggest that high concentrations of SO2 may cause damage to blood vessels. This study will help to further inform the etiologies of SO2-related cardiovascular disease.


Dose-Response ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 155932581989414 ◽  
Author(s):  
Soo Hee Lee ◽  
Seong-Ho Ok ◽  
Ji-Yoon Kim ◽  
Raghavendra Baregundi Subbarao ◽  
Sung Il Bae ◽  
...  

This study aims to examine the effect of linolenic acid on the vasodilation or vasoconstriction induced by acetylcholine and bupivacaine in isolated rat aortae and its underlying mechanism. The effect of linolenic acid on the vasodilation induced by acetylcholine, the calcium ionophore A23187, sodium nitroprusside, and 8-bromoguanosine 3′,5′-cyclic monophosphate sodium salt (bromo-cyclic guanosine monophosphate [bromo-cGMP]) in endothelium-intact and endothelium-denuded aortae was examined. Linolenic acid inhibited vasodilation induced by acetylcholine, calcium ionophore A23187, and sodium nitroprusside. However, this fatty acid increased bromo-cGMP-induced vasodilation in endothelium-denuded aortae. Linolenic acid increased bupivacaine-induced contraction in endothelium-intact aortae, whereas it decreased bupivacaine-induced contraction in endothelium-intact aortae with Nω-nitro-l-arginine methyl ester and endothelium-denuded aortae. Linolenic acid inhibited acetylcholine- and bupivacaine-induced phosphorylation of endothelial nitric oxide synthase. Sodium nitroprusside increased cGMP in endothelium-denuded aortic strips, whereas bupivacaine decreased cGMP in endothelium-intact aortic strips. Linolenic acid decreased cGMP levels produced by bupivacaine and sodium nitroprusside. Together, these results suggest that linolenic acid inhibits acetylcholine-induced relaxation by inhibiting a step just prior to nitric oxide-induced cGMP formation. In addition, linolenic acid-mediated inhibition of vasodilation induced by a toxic concentration (3 × 10−4 M) of bupivacaine seems to be partially associated with inhibition of the nitric oxide–cGMP pathway.


2009 ◽  
Vol 29 (8) ◽  
pp. 627-632 ◽  
Author(s):  
Gonzalo Marañon ◽  
Bárbara Muñoz-Escassi ◽  
William Manley ◽  
Cruz García ◽  
Rosa León ◽  
...  

2006 ◽  
Vol 34 (04) ◽  
pp. 655-665 ◽  
Author(s):  
Dae Gill Kang ◽  
Li Hua Cao ◽  
Jun Kyoung Lee ◽  
Deok Ho Choi ◽  
Seung Ju Kim ◽  
...  

The butanol extract of Phellinus igniarius (BPI) induced relaxation of the phenylephrin e-precontracted rat aorta in a dose-dependent manner, and its effect was abolished by the removal of functional endothelium. Pretreatment of the aortic tissues with NG -nitro-L-arginine methyl ester (L-NAME), methylene blue, or 1H-[1,2,4]-oxadiazole-[4,3-α]-quinoxalin1-one (ODQ) inhibited the vascular relaxation induced by BPI. BPI-induced vascular relaxations were also markedly attenuated by the addition of verapamil or diltiazem, while the relaxant effect of BPI was not blocked by pretreatment with indomethacine, glibenclamide, tetraethylammonium (TEA), atropine, or propranolol. Incubation of endothelium-intact rat aorta with BPI increased the production of cGMP in a dose-dependent manner. These results suggest that BPI dilates vascular smooth muscle via endothelium-dependent nitric oxide-cGMP signaling pathway, with the possible involvement of L-type Ca 2+ channels.


Cephalalgia ◽  
2014 ◽  
Vol 34 (14) ◽  
pp. 1169-1180 ◽  
Author(s):  
Nanna Arngrim ◽  
Henrik W Schytz ◽  
Mette K Hauge ◽  
Messoud Ashina ◽  
Jes Olesen

Introduction Carbon monoxide was previously considered to just be a toxic gas. A wealth of recent information has, however, shown that it is also an important endogenously produced signalling molecule involved in multiple biological processes. Endogenously produced carbon monoxide may thus play an important role in nociceptive processing and in regulation of cerebral arterial tone. Discussion Carbon monoxide-induced headache shares many characteristics with migraine and other headaches. The mechanisms whereby carbon monoxide causes headache may include hypoxia, nitric oxide signalling and activation of cyclic guanosine monophosphate pathways. Here, we review the literature about carbon monoxide-induced headache and its possible mechanisms. Conclusion We suggest, for the first time, that carbon monoxide may play an important role in the mechanisms of migraine and other headaches.


2001 ◽  
Vol 95 (2) ◽  
pp. 492-499 ◽  
Author(s):  
Hiroshi Maeda ◽  
Hiroshi Iranami ◽  
Manabu Yamamoto ◽  
Koji Ogawa ◽  
Yoshihiro Morikawa ◽  
...  

Background Inducible nitric oxide synthase (iNOS) is induced by endotoxin or cytokines, such as interleukin (IL)-1, through a protein synthesis pathway. Halothane reportedly inhibits protein synthesis in various tissues. The aim of the current study was to examine the effect of halothane on the IL-1beta-evoked induction of NOS in vascular smooth muscle. Methods After removal of the endothelium, arterial rings of rat aorta were mounted in an isometric force recording system. The effects of halothane (1.0-3.0%) or isoflurane (3.0%) on IL-1beta (20 ng/ml)-induced inhibition of the contractile responses to KCl (30 mM) and phenylephrine (10(-9)-10(-5) M) were studied. The cyclic guanosine monophosphate and cyclic adenosine monophosphate contents were determined by radioimmunoassay. Expression of iNOS and iNOS mRNA were measured by Western or Northern blot analysis, respectively. Results Halothane (1.0-3.0%) but not isoflurane (3%) significantly reduced the ML-1beta-induced inhibition of contraction in a concentration-dependent manner. The cyclic guanosine monophosphate content of the vascular smooth muscle increased significantly after a 5-h exposure to IL-1beta. Halothane at 3.0% significantly inhibited the increase in cyclic guanosine monophosphate content induced by IL-1beta. Halothane had no effect on cyclic adenosine monophosphate content. IL-1beta-induced expression of iNOS and iNOS mRNA in the rat aorta were inhibited significantly by halothane. Conclusion The current study demonstrated that halothane but not isoflurane inhibits IL-1beta-stimulated hyporesponsiveness to vasoconstrictive agents in vascular smooth muscle and that this inhibitory effect of halothane involves the inhibition of iNOS mRNA expression. Thus, these findings suggest that halothane may have some sites to affect nitric oxide-signaling pathway.


2019 ◽  
Vol 18 (1) ◽  
pp. 34-38
Author(s):  
Chen Lei ◽  
Pan Xiang ◽  
Shen Yonggang ◽  
Song Kai ◽  
Zhong Xingguo ◽  
...  

The aim of this study was to determine whether polydatin, a glucoside of resveratrol isolated from the root of Polygonum cuspidatum, warranted development as a potential therapeutic for ameliorating the pain originating from gallbladder spasm disorders and the underlying mechanisms. Guinea pig gallbladder smooth muscles were treated with polydatin and specific inhibitors to explore the mechanisms underpinning polydatin-induced relaxation of carbachol-precontracted guinea pig gallbladder. Our results shown that polydatin relaxed carbachol-induced contraction in a dose-dependent manner through the nitric oxide/cyclic guanosine monophosphate/protein kinase G and the cyclic adenosine monophosphate/protein kinase A signaling pathways as well as the myosin light chain kinase and potassium channels. Our findings suggested that there was value in further exploring the potential therapeutic use of polydatin in gallbladder spasm disorders.


Author(s):  
Thomas J Pirtle ◽  
Richard A Satterlie

Abstract Typically, the marine mollusk, Clione limacina, exhibits a slow, hovering locomotor gait to maintain its position in the water column. However, the animal exhibits behaviorally relevant locomotor swim acceleration during escape response and feeding behavior. Both nitric oxide and serotonin mediate this behavioral swim acceleration. In this study, we examine the role that the second messenger, cGMP, plays in mediating nitric oxide and serotonin-induced swim acceleration. We observed that the application of an analog of cGMP or an activator of soluble guanylyl cyclase increased fictive locomotor speed recorded from Pd-7 interneurons of the animal’s locomotor central pattern generator. Moreover, inhibition of soluble guanylyl cyclase decreased fictive locomotor speed. These results suggest that basal levels of cGMP are important for slow swimming and that increased production of cGMP mediates swim acceleration in Clione. Because nitric oxide has its effect through cGMP signaling and because we show herein that cGMP produces cellular changes in Clione swim interneurons that are consistent with cellular changes produced by serotonin application, we hypothesize that both nitric oxide and serotonin function via a common signal transduction pathway that involves cGMP. Our results show that cGMP mediates nitric oxide-induced but not serotonin-induced swim acceleration in Clione.


Sign in / Sign up

Export Citation Format

Share Document