Repair of Bone Defects Treated with Autogenous Bone Graft and Low-Power Laser

2006 ◽  
Vol 17 (2) ◽  
pp. 297-301 ◽  
Author(s):  
Rosane Vierra da Silva ◽  
Jos?? Angelo Camilli
2006 ◽  
Vol 21 (5) ◽  
pp. 341-347 ◽  
Author(s):  
José Carlos Garcia de Mendonça ◽  
Rafael De Rossi ◽  
Celso Massaschi Inouye ◽  
Diego Rodrigo Paulillo Bazan ◽  
João Carlos Castro Monteiro ◽  
...  

PURPOSE: Morphological study comparing castor oil polyurethane and autogenous bone graft to repair bone defect in zygomatic bone of rabbits. METHODS: Twenty-four adult, male New Zealand rabbits were randomly distributed between two groups of twelve. Bone defects of 5mm in diameter were cut through the zygomatic bone and filled with polyurethane discs in the experimental group or autogenous bone harvested from the tibia in the control group. Animals were sacrificed after 30, 60 or 90 days, and the zygomatic bones were macro- and microscopically analyzed. Student's, Fisher's, chi-squared and McNemar's tests were used for statistical analysis. RESULTS: Both the castor oil polyurethane and the autograft adapted well to the defect, with no need for fixation. Fibrous connective tissue encapsulated the polyurethane, but no inflammation or giant cell reaction was observed. Acidophilic and basophilic areas were observed inside the micropores of the polyurethane, suggesting cell nuclei. After 90 days, bone repair with a lamellar pattern of organization was observed in the control group. CONCLUSION: The castor oil polyurethane was biocompatible and did not cause inflammation. It may be considered an alternative to fill bone defects.


2007 ◽  
Vol 18 (2) ◽  
pp. 281-286 ◽  
Author(s):  
Rosane Vieira da Silva ◽  
Celso Aparecido Bertran ◽  
Elizabete Yoshie Kawachi ◽  
Jos?? Angelo Camilli

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Mikael Starecki ◽  
John A. Schwartz ◽  
Daniel A. Grande

Introduction. Autogenous bone graft is the gold standard in reconstruction of bone defects. The use of autogenous bone graft is problematic because of limited bone as well as donor site morbidity. This study evaluates a novel biomaterial as an alternative to autogenous bone graft. The biomaterial is amniotic membrane, rich in growth factors. Methods. Twenty-one adult male Sprague-Dawley rats were implanted with biomaterial using the rat critical size femoral gap model. After creation of the critical size femoral gap animals were randomized to one of the following groups: Group 1 (control): gap left empty and received no treatment; Group 2 (experimental): the gap was filled with commercially available bone graft; Group 3 (experimental): the gap was filled with bone graft plus NuCel amniotic tissue preparation. Results. The experimental groups demonstrated new bone formation compared to controls. The results were evident on radiographs and histology. Histology showed Group 1 controls to have 11.1% new bone formation, 37.8% for Group 2, and 49.2% for Group 3. These results were statistically significant. Conclusions. The study demonstrates that amniotic membrane products have potential to provide bridging of bone defects. Filling bone defects without harvesting autogenous bone would provide a significant improvement in patient care.


Author(s):  
David Kamadjaja

Maxillofacial bone defects due to tumor resection, trauma or infections should be reconstructed to maintain the bone continuity in order to preserve its masticatory, speech and esthetic functions. Autogenous bone graft have been the gold standard for mandibular defects reconstruction, however, it is associated with limitation in volume and availability as well as the donor site morbidities. Tissue engineering approach has been proved to be a good alternative to overcome the limitation of autogenous bone graft. Tissue engineering studies have been conducted combining various sources of mesenchymal stem cell, scaffolds, and or signaling molecules. The paper aims to provide information on the development of bone tissue engineering researches to reconstruct bone defects through results of numerous studies obtained in the English literature. As the conclusion, bone tissue engineering is a potential approach to reconstruct maxillofacial bone defects. Keywords: scaffold,osteoconduction, mesenchymal stem cell, bone regeneration, bone integration


RSBO ◽  
2017 ◽  
Vol 1 (2) ◽  
pp. 114
Author(s):  
Priscila Alves Teixeira ◽  
Carmen L. Mueller Storrer ◽  
Felipe Rychuv Santos ◽  
Aline Monise Sebastiani ◽  
Tatiana Miranda Deliberador

The periodontal treatment of teeth with furcation defect is clinically challenging. In cases of class II furcation defects, the regenerative surgery shows low morbidity and good prognosis when correctly indicated. The aim of the presentstudy is to report a treatment option for class II furcation defect through autogenous bone graft associated with the Bichat’s fat pad. Case report: A 59-year-old female patient was diagnosed with class II furcation defect in the left mandibular first molar. The treatment comprised surgical reconstruction of the defect with a combination of maxillary tuberosity bone graft and Bichat’s fat pad. The clinical and radiographic follow-up of 180 days showed bone formation inthe furcation area and absence of probing depth. Conclusion: An association of autogenous graft form the maxillary tuberosity with a Bichat’s fat pad proved to be a safe, low cost, and effective therapy for the regenerative treatment of class II furcation.


Sign in / Sign up

Export Citation Format

Share Document