scholarly journals Early c-Fos Induction after Cerebral Ischemia: A Possible Neuroprotective Role

2001 ◽  
Vol 21 (5) ◽  
pp. 550-556 ◽  
Author(s):  
Sunghee Cho ◽  
Eun-Mi Park ◽  
Yoonseong Kim ◽  
Nian Liu ◽  
Judit Gal ◽  
...  

The role of c-Fos in neurodegeneration or neuroprotection after cerebral ischemia is controversial. To investigate whether early c-Fos induction after ischemia is associated with neuroprotection, rats were subjected to 10 minutes of transient forebrain ischemia and c-Fos expression was examined. Resistant dentate granule cells and neurons in CA2–4 displayed more robust immunoreactivity than vulnerable neurons in the CA1 region of hippocampus during early hours of reperfusion. By 6 hours after reperfusion, c-Fos immunoreactivity was greatly diminished in all areas of the hippocampus. Administration of N-acetyl-O-methyldopamine (NAMDA), a compound previously shown to protect CA1 neurons against ischemia, increased c-Fos immunoreactivity in the CA1 vulnerable region at 6 hours after ischemia and protected SK-N-BE(2)C neurons from oxygen glucose deprivation. Further in vitro study showed that NAMDA potentiated phorbol-12 myristate-13 acetate (PMA)-induced c-Fos expression, AP1 binding activity, and late gene expression determined by chloramphenicol acetyltransferase (CAT) activity from AP1 containing tyrosine hydroxylase promoter-CAT fusion gene in SK-N-BE(2)C neurons. In vivo and in vitro results showed that a neuroprotectant, NAMDA, in concert with another stimulus (for example, ischemia or PMA) up-regulates c-Fos expression and suggested that the early rise of NAMDA-induced c-Fos expression in vulnerable CA1 neurons may account for neuroprotection by means of up-regulating late gene expression for survival.

Human Cell ◽  
2021 ◽  
Author(s):  
Jiaying Zhu ◽  
Zhu Zhu ◽  
Yipin Ren ◽  
Yukang Dong ◽  
Yaqi Li ◽  
...  

AbstractLINGO-1 may be involved in the pathogenesis of cerebral ischemia. However, its biological function and underlying molecular mechanism in cerebral ischemia remain to be further defined. In our study, middle cerebral artery occlusion/reperfusion (MACO/R) mice model and HT22 cell oxygen–glucose deprivation/reperfusion (OGD/R) were established to simulate the pathological process of cerebral ischemia in vivo and in vitro and to detect the relevant mechanism. We found that LINGO-1 mRNA and protein were upregulated in mice and cell models. Down-regulation LINGO-1 improved the neurological symptoms and reduced pathological changes and the infarct size of the mice after MACO/R. In addition, LINGO-1 interference alleviated apoptosis and promoted cell proliferation in HT22 of OGD/R. Moreover, down-regulation of LINGO-1 proved to inhibit nuclear translocation of p-NF-κB and reduce the expression level of p-JAK2 and p-STAT3. In conclusion, our data suggest that shLINGO-1 attenuated ischemic injury by negatively regulating NF-KB and JAK2/STAT3 pathways, highlighting a novel therapeutic target for ischemic stroke.


2007 ◽  
Vol 28 (4) ◽  
pp. 812-823 ◽  
Author(s):  
Richard Milner ◽  
Stephanie Hung ◽  
Xiaoyun Wang ◽  
Maria Spatz ◽  
Gregory J del Zoppo

During focal cerebral ischemia, the detachment of astrocytes from the microvascular basal lamina is not completely explained by known integrin receptor expression changes. Here, the impact of experimental ischemia (oxygen—glucose deprivation (OGD)) on dystroglycan expression by murine endothelial cells and astrocytes grown on vascular matrix laminin, perlecan, or collagen and the impact of middle cerebral artery occlusion on αβ-dystroglycan within cerebral microvessels of the nonhuman primate were examined. Dystroglycan was expressed on all cerebral microvessels in cortical gray and white matter, and the striatum. Astrocyte adhesion to basal lamina proteins was managed in part by α-dystroglycan, while ischemia significantly reduced expression of dystroglycan both in vivo and in vitro. Furthermore, dystroglycan and integrin α6β4 expressions on astrocyte end-feet decreased in parallel both in vivo and in vitro. The rapid loss of astrocyte dystroglycan during OGD appears protease-dependent, involving an matrix metalloproteinase-like activity. This may explain the rapid detachment of astrocytes from the microvascular basal lamina during ischemic injury, which could contribute to significant changes in microvascular integrity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3372-3372
Author(s):  
Ashish R. Kumar ◽  
Robert K. Slany ◽  
Jay L. Hess ◽  
John H. Kersey

Expression profiling has become an important tool for understanding gene deregulation in MLL-fusion leukemias. However, the results of gene profiling experiments are difficult to interpret when applied to leukemia cells because (i) leukemias arise in cells that differ greatly in their gene expression profiles, and (ii) leukemias most often require secondary genetic events in addition to the MLL fusion gene. Two principal model systems have been used to understand the direct effects of MLL-fusion genes. Knock-in models have the advantage of the fusion gene being under control of the physiologic promoter. On the other hand, conditional expression systems offer the ability to conduct short term experiments, permitting the analysis of direct effects on downstream genes. In the present combined-analysis, we used the Affymetrix U74Av2 oligonucleotide microarray to evaluate the effects of the MLL-fusion gene in vivo and in vitro respectively using two closely related MLL fusion genes - MLL-AF9 for knock-in and MLL-ENL for conditional expression. In the MLL-AF9 study, we compared gene expression profiles of bone marrow cells from MLL-AF9 knock-in mice (C57Bl/6, MLL-AF9+/−) to those of age-matched wild type mice (Kumar et. al. 2004, Blood). We used a t-test (p<0.05) to selected genes that showed significant changes in expression levels. In the MLL-ENL study, we transformed murine primary hematopoietic cells with a conditional MLL-ENL vector (MLL-ENL fused to the modified ligand-binding domain of the estrogen receptor) such that the fusion protein was active only in the presence of tamoxifen. We then studied the downstream effects of the fusion protein by comparing gene expression profiles of the cells in the presence and absence of tamoxifen. We used a pair-wise comparison analysis to select genes that showed a change in expression level of 1.5 fold or greater in at least two of three experiments (Zeisig et. al. 2004, Mol. Cell Biol.). Those genes that were up-regulated in both datasets were then compiled together. This list included Hoxa7, Hoxa9 and Meis1. The results for these 3 genes were confirmed by quantitative RT-PCR in both the MLL-AF9-knock-in and the MLL-ENL-conditional-expression systems. The remaining candidate genes in the common up-regulated gene set (not yet tested by quantitative RT-PCR) include protein kinases (Bmx, Mapk3, Prkcabp, Acvrl1, Cask), RAS-associated proteins (Rab7, Rab3b), signal transduction proteins (Notch1, Eat2, Shd, Fpr1), cell membrane proteins (Igsf4), chaperones (Hsp70.2), transcription factors (Isgf3g), proteins with unknown functions (Olfm1, Flot1), and hypothetical proteins. The results of the combined analysis demonstrate that these over-expressions are (i) a direct and sustained effect of the MLL-fusion protein, (ii) are independent of secondary events that might be involved in leukemogensis, and (iii) are independent of the two partner genes that participate in these fusions. The over-expression of a few genes in both the -in vitro and in vivo experimental systems makes these molecules very interesting for further studies, to understand the biology of MLL-fusion leukemias and for development of new therapeutic strategies.


2019 ◽  
Author(s):  
Xinyu Wang ◽  
Liangshu Feng ◽  
Meiying Xin ◽  
Yulei Hao ◽  
Xu Wang ◽  
...  

Abstract Background : Connexin 43 (Cx43) are the most widely distributed gap junction proteins in the nervous system. Cx43 enables cell-to-cell communication and plays an important role in ion transport, substrate exchange and delivery of information , which have been implicated in cerebral ischemia injury. Our previous work revealed the relationships between Cx43 and glia-mediated neuroinflammation through the release of ATP in oxygen-glucose deprivation (OGD), which means degradation of Cx43 may improve neuroinflammatory damage during OGD injury . However, the roles of Cx43 degradation and neuroinflammation caused by OGD remain unclear. Methods: We used primary cultured astrocytes treated with OGD as an in vitro model of cerebral ischemia injury and we used middle cerebral artery occlusion (MCAO) model as an in vivo model of cerebral ischemia. HeLa cells were used in overexpression experiments. Cx43 protein levels were determined by western blotting. The interaction between Cx43 and related autophagy receptors was determined by co-immunoprecipitation and immunofluorescence. The gene knockdown (KD) of ATG5, OPTN, NDP52, PINK1 and Cx43 was applied by siRNA transfection. Related cytokines were detected by cytometric bead assay. Results: We found that Cx43 protein levels increased after ischemia in gene KD of ATG5, OPTN, NDP52 and PINK1 primary astrocytes. The interaction of Cx43 with OPTN, NDP52 and PINK1 was increased after cerebral ischemia injury in vitro and vivo. While the interaction was weakened after point mutation of Cx43 at Ser368, Tyr265 and Tyr247. Meanwhile, IL-10 upregulated during OGD after KD of ATG5, OPTN, NDP52 and PINK1 in astrocytes , while TNF downregulated during OGD after KD of ATG5, OPTN, NDP52 and PINK1 in astrocytes. Conclusions: Our results suggest that degradation of Cx43 is caused by selective autophagy during ischemia injury and the autophagy degradation of Cx43 plays important roles in neuroinflammation mediated by OGD injury. Treatment targeting Cx43 degradation pathway can improve neuroinflammation responses induced by OGD injury , which provide novel therapeutic strategies and crosstalk between autophagy and neuroinflammation.


2020 ◽  
pp. 0271678X2097311
Author(s):  
Zhanyang Yu ◽  
Wenlu Li ◽  
Jing Lan ◽  
Kazuhide Hayakawa ◽  
Xunming Ji ◽  
...  

In order to rescue neuronal function, neuroprotection should be required not only for the neuron soma but also the dendrites. Here, we propose the hypothesis that ephrin-B2-EphB2 signaling may be involved in dendritic degeneration after ischemic injury. A mouse model of focal cerebral ischemia with middle cerebral artery occlusion (MCAO) method was used for EphB2 signaling test in vivo. Primary cortical neuron culture and oxygen-glucose deprivation were used to assess EphB2 signaling in vitro. siRNA and soluble ephrin-B2 ectodomain were used to block ephrin-B2-Ephb2 signaling. In the mouse model of focal cerebral ischemia and in neurons subjected to oxygen-glucose deprivation, clustering of ephrin-B2 with its receptor EphB2 was detected. Phosphorylation of EphB2 suggested activation of this signaling pathway. RNA silencing of EphB2 prevented neuronal death and preserved dendritic length. To assess therapeutic potential, we compared the soluble EphB2 ectodomain with the NMDA antagonist MK801 in neurons after oxygen-glucose deprivation. Both agents equally reduced lactate dehydrogenase release as a general marker of neurotoxicity. However, only soluble EphB2 ectodomain protected the dendrites. These findings provide a proof of concept that ephrin-B2-EphB2 signaling may represent a novel therapeutic target to protect both the neuron soma as well as dendrites against ischemic injury.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Masahiro Hatakeyama ◽  
Masato Kanazawa ◽  
Itaru Ninomiya ◽  
Kaoru Omae ◽  
Yasuko Kimura ◽  
...  

AbstractCell therapies that invoke pleiotropic mechanisms may facilitate functional recovery in patients with stroke. Based on previous experiments using microglia preconditioned by oxygen-glucose deprivation, we hypothesized that the administration of peripheral blood mononuclear cells (PBMCs) preconditioned by oxygen-glucose deprivation (OGD-PBMCs) to be a therapeutic strategy for ischemic stroke. Here, OGD-PBMCs were identified to secrete remodelling factors, including the vascular endothelial growth factor and transforming growth factor-β in vitro, while intra-arterial administration of OGD-PBMCs at 7 days after focal cerebral ischemia prompted expression of such factors in the brain parenchyma at 28 days following focal cerebral ischemia in vivo. Furthermore, administration of OGD-PBMCs induced an increasing number of stage-specific embryonic antigen-3-positive cells both in vitro and in vivo. Finally, it was found to prompt angiogenesis and axonal outgrowth, and functional recovery after cerebral ischemia. In conclusion, the administration of OGD-PBMCs might be a novel therapeutic strategy against ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document