Cellular Engineering: Molecular Repair of Membranes to Rescue Cells of the Damaged Nervous System

Neurosurgery ◽  
2001 ◽  
Vol 49 (2) ◽  
pp. 370-379 ◽  
Author(s):  
Richard B. Borgens

Abstract PURPOSE The acute administration of hydrophilic polymers (polyethylene glycol) can immediately seal nerve membranes, preventing their continuing dissolution and secondary axotomy. Polymer application can even be used to reconnect, or fuse, the proximal and distal segments of severed axons in completely transected adult mammalian spinal cord. CONCEPT The sealing or fusion of damaged nerve membranes leads to a very rapid (minutes or hours) recovery of excitability in severely damaged nerve fibers, observed as a rapid return of nerve impulse conduction in vitro, as well as an in vivo recovery of spinal cord conduction and behavioral loss in spinal cord-injured adult guinea pigs. RATIONALE Surfactant application produces a rapid repair of membrane breaches through mechanisms of interaction between the polymers and the aqueous phase of damaged membranes, and their ability to insert into, or seal, the hydrophobic core of the axolemma exposed by mechanical damage. DISCUSSION This new technology applied to severe neurotrauma offers a clinically safe and practical means to rescue significant populations of spinal cord nerve fibers within 8 hours after damage—preventing their continued dissolution and secondary axotomy by secondary injury mechanisms. Application of this novel technology to other injuries to the peripheral and central nervous system is discussed, as well as a general application to soft tissue trauma.

Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1301-1309 ◽  
Author(s):  
R. Tuttle ◽  
W.D. Matthew

Neurons can be categorized in terms of where their axons project: within the central nervous system, within the peripheral nervous system, or through both central and peripheral environments. Examples of these categories are cerebellar neurons, sympathetic neurons, and dorsal root ganglion (DRG) neurons, respectively. When explants containing one type of neuron were placed between cryosections of neonatal or adult sciatic nerve and neonatal spinal cord, the neurites exhibited a strong preference for the substrates that they would normally encounter in vivo: cerebellar neurites generally extended only on spinal cord, sympathetic neurites on sciatic nerve, and DRG neurites on both. Neurite growth from DRG neurons has been shown to be stimulated by neurotrophins. To determine whether neurotrophins might also affect the substrate preferences of neurites, DRG were placed between cryosections of neonatal spinal cord and adult sciatic nerve and cultured for 36 to 48 hours in the presence of various neurotrophins. While DRG cultured in NGF-containing media exhibited neurite growth over both spinal cord and sciatic nerve substrates, in the absence of neurotrophins DRG neurites were found almost exclusively on the CNS cryosection. To determine whether these neurotrophin-dependent neurite patterns resulted from the selective survival of subpopulations of DRG neurons with distinct neurite growth characteristics, a type of rescue experiment was performed: DRG cultured in neurotrophin-free medium were fed with NGF-containing medium after 36 hours in vitro and neurite growth examined 24 hours later; most DRG exhibited extensive neurite growth on both peripheral and central nervous system substrates.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 2021 ◽  
pp. 1-27
Author(s):  
Hengshuo Hu ◽  
Nan Xia ◽  
Jiaquan Lin ◽  
Daoyong Li ◽  
Chuanjie Zhang ◽  
...  

Spinal cord injury (SCI) is a traumatic disease that can cause severe nervous system dysfunction. SCI often causes spinal cord mitochondrial dysfunction and produces glucose metabolism disorders, which affect neuronal survival. Zinc is an essential trace element in the human body and plays multiple roles in the nervous system. This experiment is intended to evaluate whether zinc can regulate the spinal cord and neuronal glucose metabolism and promote motor functional recovery after SCI. Then we explore its molecular mechanism. We evaluated the function of zinc from the aspects of glucose uptake and the protection of the mitochondria in vivo and in vitro. The results showed that zinc elevated the expression level of GLUT4 and promoted glucose uptake. Zinc enhanced the expression of proteins such as PGC-1α and NRF2, reduced oxidative stress, and promoted mitochondrial production. In addition, zinc decreased neuronal apoptosis and promoted the recovery of motor function in SCI mice. After administration of AMPK inhibitor, the therapeutic effect of zinc was reversed. Therefore, we concluded that zinc regulated the glucose metabolism of the spinal cord and neurons and promoted functional recovery after SCI through the AMPK pathway, which is expected to become a potential treatment strategy for SCI.


2019 ◽  
Author(s):  
Kritika S. Katiyar ◽  
Laura A. Struzyna ◽  
Suradip Das ◽  
D. Kacy Cullen

AbstractThe central feature of peripheral motor axons is their remarkable lengths as they project from a motor neuron residing in the spinal cord to an often-distant target muscle. However, to date in vitro models have not replicated this central feature owing to challenges in generating motor axon tracts beyond a few millimeters in length. To address this, we have developed a novel combination of micro-tissue engineering and mechanically assisted growth techniques to create long-projecting centimeter-scale motor axon tracts. Here, primary motor neurons were isolated from the spinal cords of rats and induced to form engineered micro-spheres via forced aggregation in custom micro-wells. This three-dimensional micro-tissue yielded healthy motor neurons projecting dense, fasciculated axonal tracts. Within our custom-built mechanobioreactors, motor neuron culture conditions, neuronal/axonal architecture, and mechanical growth conditions were systematically optimized to generate parameters for robust and efficient “stretch-growth” of motor axons. We found that axons projecting from motor neuron aggregates were able to respond to axon displacement rates at least 10 times greater than that tolerated by axons projecting from dissociated motor neurons. The growth and structural characteristics of these stretch-grown motor axons were compared to benchmark stretch-grown axons from sensory dorsal root ganglion neurons, revealing similar axon densities yet increased motor axon fasciculation. Finally, motor axons were integrated with myocytes and then stretch-grown to create novel long-projecting axonal-myocyte constructs that better recreate characteristic dimensions of native nerve-muscle anatomy. This is the first demonstration of mechanical elongation of spinal cord motor axons and may have applications as anatomically inspired in vitro testbeds or as tissue engineered “living scaffolds” for targeted axon tract reconstruction following nervous system injury or disease.Significance StatementWe have developed novel axon tracts of unprecedented lengths spanning either two discrete populations of neurons or a population of neurons and skeletal myocytes. This is the first demonstration of “stretch-grown” motor axons that recapitulate the structure of spinal motor neurons in vivo by projecting long axons from a pool of motor neurons to distant targets, and may have applications as anatomically inspired in vitro test beds to study mechanisms of axon growth, development, and neuromuscular function in anatomically accurate axo-myo constructs; as well as serve as “living scaffolds” in vivo for targeted axon tract reconstruction following nervous system trauma.


2008 ◽  
Vol 4 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Xiaoqin Zhu ◽  
Robert A. Hill ◽  
Akiko Nishiyama

NG2 cells represent a unique glial cell population that is distributed widely throughout the developing and adult CNS and is distinct from astrocytes, mature oligodendrocytes and microglia. The ability of NG2 cells to differentiate into myelinating oligodendrocytes has been documented in vivo and in vitro. We reported recently that NG2 cells in the forebrain differentiate into myelinating oligodendrocytes but into a subpopulation of protoplasmic astrocytes (Zhu et al., 2008). However, the in vivo fate of NG2 cells in the spinal cord and cerebellum has remained unknown. To investigate the fate of NG2 cells in caudal central nervous system (CNS) regions in vivo, we examined the phenotype of cells that express EGFP in mice that are double transgenic for NG2CreBAC and the Cre reporter Z/EG. The fate of NG2 cells can be studied in these mice by permanent expression of EGFP in cells that have undergone Cre-mediated recombination in NG2 cells. We find that NG2 cells give rise to oligodendrocytes in both gray and white matter of the spinal cord and cerebellum, and to protoplasmic astrocytes in the gray matter of the spinal cord. However, NG2 cells do not give rise to astrocytes in the white matter of the spinal cord and cerebellum. These observations indicate that NG2 cells serve as precursor cells for oligodendrocytes and a subpopulation of protoplasmic astrocytes throughout the rostrocaudal axis of the CNS.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jan Spaas ◽  
Wouter M. A. Franssen ◽  
Charly Keytsman ◽  
Laura Blancquaert ◽  
Tim Vanmierlo ◽  
...  

Abstract Background Multiple sclerosis (MS) is a chronic autoimmune disease driven by sustained inflammation in the central nervous system. One of the pathological hallmarks of MS is extensive free radical production. However, the subsequent generation, potential pathological role, and detoxification of different lipid peroxidation-derived reactive carbonyl species during neuroinflammation are unclear, as are the therapeutic benefits of carbonyl quenchers. Here, we investigated the reactive carbonyl acrolein and (the therapeutic effect of) acrolein quenching by carnosine during neuroinflammation. Methods The abundance and localization of acrolein was investigated in inflammatory lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) mice. In addition, we analysed carnosine levels and acrolein quenching by endogenous and exogenous carnosine in EAE. Finally, the therapeutic effect of exogenous carnosine was assessed in vivo (EAE) and in vitro (primary mouse microglia, macrophages, astrocytes). Results Acrolein was substantially increased in inflammatory lesions of MS patients and EAE mice. Levels of the dipeptide carnosine (β-alanyl-l-histidine), an endogenous carbonyl quencher particularly reactive towards acrolein, and the carnosine-acrolein adduct (carnosine-propanal) were ~ twofold lower within EAE spinal cord tissue. Oral carnosine treatment augmented spinal cord carnosine levels (up to > tenfold), increased carnosine-acrolein quenching, reduced acrolein-protein adduct formation, suppressed inflammatory activity, and alleviated clinical disease severity in EAE. In vivo and in vitro studies indicate that pro-inflammatory microglia/macrophages generate acrolein, which can be efficiently quenched by increasing carnosine availability, resulting in suppressed inflammatory activity. Other properties of carnosine (antioxidant, nitric oxide scavenging) may also contribute to the therapeutic effects. Conclusions Our results identify carbonyl (particularly acrolein) quenching by carnosine as a therapeutic strategy to counter inflammation and macromolecular damage in MS.


1996 ◽  
Vol 76 (3) ◽  
pp. 1572-1580 ◽  
Author(s):  
R. Shi ◽  
A. R. Blight

1. White matter strips from the ventral spinal cord of adult guinea pigs were isolated in vitro, and their electrophysiological characteristics and response to controlled focal compression injury were examined. A double sucrose gap technique was used for stimulation and recording at opposite ends of a 12.5 mm-diam central well superfused with oxygenated Krebs solution. 2. The compound action potential recorded with the sucrose gap was similar in form to single fiber potentials recorded with intra-axonal electrodes, including the presence of a prolonged depolarizing afterpotential. 3. Three types of conduction block resulting from compression were identified: an immediate, spontaneously reversible component, which may result from a transient increase in membrane permeability and consequent disturbance of ionic distribution; a second component that was irreversible within 1-2 h of recording, perhaps resulting from complete axolemmal disruption; and a third component, which may have been due to disruption of the myelin sheath, that appeared to be reversible with application of 10-100 microM of the potassium channel blocker 4-aminopyridine. 4. Conduction deficits--decreased amplitude and increased latency of the compound potential--were stable between 5 and 60 min postinjury, and their intensity corellated with the extent of initial compression over a full range of severity. 5. Stimulus-response data indicate that mechanical damage to axons in compression was evenly distributed across the caliber spectrum, suggesting that the susceptibility of large caliber axons seen histopathologically after injury in vivo may be based on delayed, secondary processes. 6. The model provides the ability to monitor changes in the properties of central myelinated axons after compression injury in the absence of pathological variables related to vascular damage. This initial investigation found no evidence of secondary deterioration of axons in the 1st h after injury, although there was evidence of both transient and lasting mechanical damage to axons and their myelin sheaths.


1982 ◽  
Vol 60 (11) ◽  
pp. 1415-1424 ◽  
Author(s):  
H. B. Demopoulos ◽  
E. S. Flamm ◽  
M. L. Seligman ◽  
D. D. Pietronigro ◽  
J. Tomasula ◽  
...  

The hypothesis that pathologic free-radical reactions are initiated and catalyzed in the major central nervous system (CNS) disorders has been further supported by the current acute spinal cord injury work that has demonstrated the appearance of specific, cholesterol free-radical oxidation products. The significance of these products is suggested by the fact that: (i) they increase with time after injury; (ii) their production is curtailed with a steroidal antioxidant; (iii) high antioxidant doses of the steroidal antioxidant which curtail the development of free-radical product prevent tissue degeneration and permit functional restoration. The role of pathologic free-radical reactions is also inferred from the loss of ascorbic acid, a principal CNS antioxidant, and of extractable cholesterol. These losses are also prevented by the steroidal antioxidant. This model system is among others in the CNS which offer distinctive opportunities to study, in vivo, the onset and progression of membrane damaging free-radical reactions within well-defined parameters of time, extent of tissue injury, correlation with changes in membrane enzymes, and correlation with readily measurable in vivo functions.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2245
Author(s):  
Jue-Zong Yeh ◽  
Ding-Han Wang ◽  
Juin-Hong Cherng ◽  
Yi-Wen Wang ◽  
Gang-Yi Fan ◽  
...  

In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI.


1992 ◽  
Vol 119 (5) ◽  
pp. 1327-1333 ◽  
Author(s):  
C Koseki ◽  
D Herzlinger ◽  
Q al-Awqati

During metanephric development, non-polarized mesenchymal cells are induced to form the epithelial structures of the nephron following interaction with extracellular matrix proteins and factors produced by the inducing tissue, ureteric bud. This induction can occur in a transfilter organ culture system where it can also be produced by heterologous cells such as the embryonic spinal cord. We found that when embryonic mesenchyme was induced in vitro and in vivo, many of the cells surrounding the new epithelium showed morphological evidence of programmed cell death (apoptosis) such as condensed nuclei, fragmented cytoplasm, and cell shrinking. A biochemical correlate of apoptosis is the transcriptional activation of a calcium-sensitive endonuclease. Indeed, DNA isolated from uninduced mesenchyme showed progressive degradation, a process that was prevented by treatment with actinomycin-D or cycloheximide and by buffering intracellular calcium. These results demonstrate that the metanephric mesenchyme is programmed for apoptosis. Incubation of mesenchyme with a heterologous inducer, embryonic spinal cord prevented this DNA degradation. To investigate the mechanism by which inducers prevented apoptosis we tested the effects of protein kinase C modulators on this process. Phorbol esters mimicked the effects of the inducer and staurosporine, an inhibitor of this protein kinase, prevented the effect of the inducer. EGF also prevented DNA degradation but did not lead to differentiation. These results demonstrate that conversion of mesenchyme to epithelial requires at least two steps, rescue of the mesenchyme from apoptosis and induction of differentiation.


1946 ◽  
Vol 84 (4) ◽  
pp. 277-292 ◽  
Author(s):  
S. Edward Sulkin ◽  
Christine Zarafonetis ◽  
Andres Goth

Anesthesia with diethyl ether significantly alters the course and outcome of experimental infections with the equine encephalomyelitis virus (Eastern or Western type) or with the St. Louis encephalitis virus. No comparable effect is observed in experimental infections produced with rabies or poliomyelitis (Lansing) viruses. The neurotropic virus infections altered by ether anesthesia are those caused by viruses which are destroyed in vitro by this anesthetic, and those infections not affected by ether anesthesia are caused by viruses which apparently are not destroyed by ether in vitro. Another striking difference between these two groups of viruses is their pathogenesis in the animal host; those which are inhibited in vivo by ether anesthesia tend to infect cells of the cortex, basal ganglia, and only occasionally the cervical region of the cord. On the other hand, those which are not inhibited in vivo by ether anesthesia tend to involve cells of the lower central nervous system and in the case of rabies, peripheral nerves. This difference is of considerable importance in view of the fact that anesthetics affect cells of the lower central nervous system only in very high concentrations. It is obvious from the complexity of the problem that no clear-cut statement can be made at this point as to the mechanism of the observed effect of ether anesthesia in reducing the mortality rate in certain of the experimental neurotropic virus infections. Important possibilities include a direct specific effect of diethyl ether upon the virus and a less direct effect of the anesthetic upon the virus through its alteration of the metabolism of the host cell.


Sign in / Sign up

Export Citation Format

Share Document