Rapid Three-Dimensional Measuring System for Facial Surface Structure

1998 ◽  
Vol 102 (6) ◽  
pp. 2108-2113 ◽  
Author(s):  
Tomohiro Yamada ◽  
Toshio Sugahara ◽  
Yoshihide Mori ◽  
Masayosi Sakuda
2008 ◽  
Vol 580-582 ◽  
pp. 557-560 ◽  
Author(s):  
J.G. Han ◽  
Kyong Ho Chang ◽  
Gab Chul Jang ◽  
K.K. Hong ◽  
Sam Deok Cho ◽  
...  

Recently, in the loading tests for steel members, the deformation value is measured by calculating a distance of both cross-heads. This measuring method encounters a test error due to various environmental factors, such as initial slip, etc.. Especially, in the case of welded members, the non-uniform deformation behavior in welded joints is observed because of the effect of welding residual stress and weld metal. This is mainly responsible for a test error and a loss of the reliability for used test instruments. Therefore, to improve the accuracy and the applicability of measuring system, it is necessary to employ a visual monitoring system which can accurately measure the local and overall deformation of welded members. In this paper, to accurately measure a deformation of welded members, a visual monitoring system (VMS) was developed by using three-dimensional digital photogrammetry. The VMS was applied to the loading tests of a welded member. The accuracy and the applicability of VMS was verified by comparing to the deformation value measured by a test instrument (MTS-810). The characteristics of the behavior near a welded joint were investigated by using VMS.


Author(s):  
Ketki Lichade ◽  
Yizhou Jiang ◽  
Yayue Pan

Abstract Recently, many studies have investigated additive manufacturing of hierarchical surfaces with high surface area/volume (SA/V) ratios, and their performance has been characterized for applications in next-generation functional devices. Despite recent advances, it remains challenging to design and manufacture high SA/V ratio structures with desired functionalities. In this study, we established the complex correlations among the SA/V ratio, surface structure geometry, functionality, and manufacturability in the Two-Photon Polymerization (TPP) process. Inspired by numerous natural structures, we proposed a 3-level hierarchical structure design along with the mathematical modeling of the SA/V ratio. Geometric and manufacturing constraints were modeled to create well-defined three-dimensional hierarchically structured surfaces with a high accuracy. A process flowchart was developed to design the proposed surface structures to achieve the target functionality, SA/V ratio, and geometric accuracy. Surfaces with varied SA/V ratios and hierarchy levels were designed and printed. The wettability and antireflection properties of the fabricated surfaces were characterized. It was observed that the wetting and antireflection properties of the 3-level design could be easily tailored by adjusting the design parameter settings and hierarchy levels. Furthermore, the proposed surface structure could change a naturally-hydrophilic surface to near-superhydrophobic. Geometrical light trapping effects were enabled and the antireflection property could be significantly enhanced (>80% less reflection) by the proposed hierarchical surface structures. Experimental results implied the great potential of the proposed surface structures for various applications such as microfluidics, optics, energy, and interfaces.


2012 ◽  
Vol 198-199 ◽  
pp. 1053-1056
Author(s):  
Liang Han ◽  
Jing Song Jin ◽  
Wei Zhang

Tennis is a very elegant sport, with a strong sense of competitiveness and appreciation, which has gained more and more attentions in our country, and it tends to be a fashion. This project is to achieve the measurement of tennis batting motion attitude in three dimensional space using a combination of the three-axis MEMS(Micro-electromechanical Systems) sensors, and make research on the principle of measurement system, composition and data acquisition. Body posture measurement system is to measure the attitude measurement in human movement, it can be applied to study the movement posture or to meet the requirements of position control, which provides theoretical foundation for scientific training and prevention of sports injury and also plays a significant and instructional role in improving the training levels of tennis playing and generalizing nationwide fitness campaign.


1996 ◽  
Vol 33 (3) ◽  
pp. 245-251 ◽  
Author(s):  
Katsuaki Mishima ◽  
Toshio Sugahara ◽  
Yoshihide Mori ◽  
Masayoshi Sakuda

A three-dimensional measuring system was developed to analyze changes in palatal forms of UCLP infants. This system quantified the change of the curved surface on a palate by automatically superimposing two wireframe models obtained from casts at different stages of growth. It also analyzed the curvature of the palatal surface. This system was used to study the palates of 20 infants with unilateral cleft lip and palate (UCLP), from the first to fourth months after birth (12 with Hotz's plate and 8 without, selected at random). Both major and lesser maxillary segments without Hotz's plate remained anterior and lateral although those with Hotz's plate moved mesially during the fourth month after birth. In addition, the degrees of curvature on the palatal surfaces with Hotz's plate were less than those without Hotz's plate.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2762 ◽  
Author(s):  
Ruimin Shi ◽  
Bukang Wang ◽  
Zhiwei Yan ◽  
Zongyan Wang ◽  
Lei Dong

In order to explore the relationship between the surface topography parameters and friction properties of a rough contact interface under fluid dynamic pressure lubrication conditions, friction experiments were carried out. The three-dimensional surface topography of specimens was measured and characterized with a profile microscopy measuring system and scanning electron microscope. The friction coefficient showed a trend of decreasing first and then increasing with the increase in some surface topography parameters at lower pressure, such as the surface height arithmetic mean Sa, surface height distribution kurtosis Sku, surface volume average volume Vvv, and surface center area average void volume Vvc, which are the ISO 25178 international standard parameters. The effects of surface topographic parameters on friction were analyzed and the wear mechanism of the worn surface was presented. The wear characteristics of the samples were mainly characterized as strain fatigue, grinding, and scraping. The results provide a theoretical basis for the functional characterization of surface topography.


Sign in / Sign up

Export Citation Format

Share Document