[BP.08.07] RESIDENT STEM CELLS IN THE PERIVASCULAR ADIPOSE TISSUE IS ALTERED DURING AGING

2017 ◽  
Vol 35 ◽  
pp. e269
Author(s):  
P. Gao
Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2235
Author(s):  
Gemma Arderiu ◽  
Carmen Lambert ◽  
Carlos Ballesta ◽  
Fabrizio Moscatiello ◽  
Gemma Vilahur ◽  
...  

Background: The increase in the incidence of obesity and obesity-related cardiovascular risk factors (CVRFs) over the last decades has brought attention on adipose tissue (AT) pathobiology. The expansion of AT is associated with the development of new vasculature needed to perfuse the tissue; however, not all fat depots have the same ability to induce angiogenesis that requires recruitment of their own endothelial cells. In this study we have investigated the effect of different CVRFs, on the angiogenic capacity of the subcutaneous (SAT) and visceral (VAT) adipose tissue and on the function of their mesenchymal cell reservoir. Methods: A transcriptomic approach was used to compare the different angiogenic and inflammatory profiles of the subcutaneous and visceral fat depots from individuals with obesity, as well as their resident stem cells (ASCs). Influence of other risk factors on fat composition was also measured. Finally, the microvesicles (MVs) released by ASCs were isolated and their regenerative potential analyzed by molecular and cellular methodologies. Results: Obesity decreases the angiogenic capacity of AT. There are differences between SAT and VAT; from the 21 angiogenic-related genes analyzed, only three were decreased in SAT compared with those decreased in VAT. ASCs isolated from both fat depots showed significant differences; there was a significant up-regulation of the VEGF-pathway on visceral derived ASCs. ASCs release MVs that stimulate endothelial cell migration and angiogenic capacity. Conclusions: In patients with obesity, SAT expresses a greater number of angiogenic molecules than VAT, independent of the presence of other CVRFs.


Author(s):  
Eckhard U. Alt ◽  
Christoph Schmitz ◽  
Xiaowen Bai

Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold certain promise for regenerative medicine. This paper is intended to clarify and facilitate the understanding, development and adoption of regenerative medicine in general and specifically of therapies based on unmodified, autologous adipose-derived regenerative cells (UA-ADRCs). To this end, results of landmark experiments on stem cells and stem cell therapy performed in the labs of the authors are summarized, the most intriguing of which are the following: (i) vascular associated mesenchymal stem cells (MSCs) can be isolated from different organs (adipose tissue, heart, skin, bone marrow and skeletal muscle) and differentiated into ectoderm, mesoderm and endoderm, providing significant support for the hypothesis of the existence of a small, ubiquitously distributed, universal vascular associated stem cell with full pluripotency; (ii) the orientation and differentiation of MSCs are driven by signals of the respective microenvironment; and (iii) these stem cells irrespective of the tissue origin exhibit full pluripotent differentiation potential without any prior genetic modification or the need for culturing. They can be obtained from a small amount of adipose tissue when using the appropriate technology for isolating the cells, and can be harvested from and re-applied to the same patient at the point of care without the need for complicated processing, manipulation, culturing, expensive equipment, or repeat interventions. These findings demonstrate the potential of UA-ADRCs for triggering the development of an entire new generation of medicine for the benefit of patients and of healthcare systems.


Author(s):  
Mohammadreza Ebrahimzade ◽  
Mohammad Mirdoraghi ◽  
Ameneh Alikarami ◽  
Sahar Heidari ◽  
Tayebeh Rastegar ◽  
...  

Background: Reducing the healing time of wounds can decrease the patient`s immobility time and their medical costs,leading a faster return of the patients to daily work. Objective: To compare the effect of adipose-derived stem cells and curcumin-containing liposomal nanoparticles with phenytoin on wound healing. Method: After anesthesia of the rats, open skin ulcers were made by a bistoury blade.Subsequently,stem cells were re-moved from the adipose tissue of theupper border of the epididymis. Then,the originality of stem cells was confirmed by the flow cytometry. The fusion method was used to prepare the liposome;and also nanoliposomal particles wereconfirmedby using the DLS microscope.The percentage of recovery and the cell count was measured with IMAGEJ.The expression of genes was assessed by PCR. The number of fibro blasts was counted by immuno histo chemistry techniques.The amount of collagen was determined by Tri-chromosome staining and the number of capillaries was enumerated byH & E staining. Results: The expression of TGF-β1 gene, vascular number, wound healing rate and the numberof fibroblasts increased significantly in adipose tissue-derived stem cells and curcumin nanoliposome groups(p<0.05);the wound surface was also decreased significantly(p<0.05). Conclusion: Based on the results of our research, adipose tissue-derived stem cells and curcumin nanoliposomescan heal wounds efficiently.


Author(s):  
Sophie N Saxton ◽  
Lauren K Toms ◽  
Robert G Aldous ◽  
Sarah B Withers ◽  
Jacqueline Ohanian ◽  
...  

AbstractPurposePerivascular adipose tissue (PVAT) exerts an anti-contractile effect which is vital in regulating vascular tone. This effect is mediated via sympathetic nervous stimulation of PVAT by a mechanism which involves noradrenaline uptake through organic cation transporter 3 (OCT3) and β3-adrenoceptor-mediated adiponectin release. In obesity, autonomic dysfunction occurs, which may result in a loss of PVAT function and subsequent vascular disease. Accordingly, we have investigated abnormalities in obese PVAT, and the potential for exercise in restoring function.MethodsVascular contractility to electrical field stimulation (EFS) was assessed ex vivo in the presence of pharmacological tools in ±PVAT vessels from obese and exercised obese mice. Immunohistochemistry was used to detect changes in expression of β3-adrenoceptors, OCT3 and tumour necrosis factor-α (TNFα) in PVAT.ResultsHigh fat feeding induced hypertension, hyperglycaemia, and hyperinsulinaemia, which was reversed using exercise, independent of weight loss. Obesity induced a loss of the PVAT anti-contractile effect, which could not be restored via β3-adrenoceptor activation. Moreover, adiponectin no longer exerts vasodilation. Additionally, exercise reversed PVAT dysfunction in obesity by reducing inflammation of PVAT and increasing β3-adrenoceptor and OCT3 expression, which were downregulated in obesity. Furthermore, the vasodilator effects of adiponectin were restored.ConclusionLoss of neutrally mediated PVAT anti-contractile function in obesity will contribute to the development of hypertension and type II diabetes. Exercise training will restore function and treat the vascular complications of obesity.


Sign in / Sign up

Export Citation Format

Share Document