scholarly journals Prognostic Significance of Blood Lactate and Lactate Clearance in Trauma Patients

2012 ◽  
Vol 117 (6) ◽  
pp. 1276-1288 ◽  
Author(s):  
Marie-Alix Régnier ◽  
Mathieu Raux ◽  
Yannick Le Manach ◽  
Yves Asencio ◽  
Johann Gaillard ◽  
...  

Background Lactate has been shown to be a prognostic biomarker in trauma. Although lactate clearance has already been proposed as an intermediate endpoint in randomized trials, its precise role in trauma patients remains to be determined. Methods Blood lactate levels and lactate clearance (LC) were calculated at admission and 2 and 4 h later in trauma patients. The association of initial blood lactate level and lactate clearance with mortality was tested using receiver-operating characteristics curve, logistic regression using triage scores, Trauma Related Injury Severity Score as a reference standard, and reclassification method. Results The authors evaluated 586 trauma patients (mean age 38±16 yr, 84% blunt and 16% penetrating, mortality 13%). Blood lactate levels at admission were elevated in 327 (56%) patients. The lactate clearance should be calculated within the first 2 h after admission as LC0-2 h was correlated with LC0-4 h (R=0.55, P<0.001) but not with LC2-4 h (R=0.04, not significant). The lactate clearance provides additional predictive information to initial blood lactate levels and triage scores and the reference score. This additional information may be summarized using a categorical approach (i.e., less than or equal to -20 %/h) in contrast to initial blood lactate. The results were comparable in patients with high (5 mM/l or more) initial blood lactate. Conclusions Early (0-2 h) lactate clearance is an important and independent prognostic variable that should probably be incorporated in future decision schemes for the resuscitation of trauma patients.

2017 ◽  
Vol 126 (3) ◽  
pp. 522-533 ◽  
Author(s):  

Abstract Background Initial blood lactate and base deficit have been shown to be prognostic biomarkers in trauma, but their respective performances have not been compared. Methods Blood lactate levels and base deficit were measured at admission in trauma patients in three level 1 trauma centers. This was a retrospective analysis of prospectively acquired data. The association of initial blood lactate and base deficit with mortality was tested using receiver operating characteristics curve, logistic regression using triage scores (Revised Trauma Score and Mechanism Glasgow scale and Arterial Pressure score), and Trauma Related Injury Severity Score as a reference standard. The authors also used a reclassification method. Results The authors evaluated 1,075 trauma patients (mean age, 39 ± 18 yr, with 90% blunt and 10% penetrating injuries and a mortality of 13%). At admission, blood lactate was elevated in 425 (39%) patients and base deficit was elevated in 725 (67%) patients. Blood lactate was correlated with base deficit (R2 = 0.54; P < 0.001). Using logistic regression, blood lactate was a better predictor of death than base deficit when considering its additional predictive value to triage scores and Trauma Related Injury Severity Score. This result was confirmed using a reclassification method but only in the subgroup of normotensive patients (n = 745). Conclusions Initial blood lactate should be preferred to base deficit as a biologic variable in scoring systems built to assess the initial severity of trauma patients.


2014 ◽  
Vol 54 (3) ◽  
pp. 168
Author(s):  
Keswari Aji Patriawati ◽  
Nurnaningsih Nurnaningsih ◽  
Purnomo Suryantoro

Background Sepsis is a major health problem in children and aleading cause of death. In recent decades, lactate has been studiedas a biomarker for sepsis, and as an indicator of global tissuehypoxia, increased glycolysis, endotoxin effect, and anaerobicmetabolism. Many studies h ave shown both high levels andincreased serial blood lactate level measurements to be associatedwith increased risk of sepsis mortality.Objective To evaluate serial blood lactate levels as a prognosticfactor for sepsis mortality.Methods We performed an observational, prospective study in thePediatric Intensive Care Unit (PICU) at DR. Sardjito Hospital,Yogyakarta from July to November 2012. We collected serialblood lactate specimens of children with sepsis, first at the time ofadmission, followed by 6 and 24 hours later. The outcome measurewas mortality at the end ofintensive care. Relative risks and 95%confidence intervals of the factors associated with mortality werecalculated using univariate and multivariate analyses.Results Sepsis was found in 91 (50.3%) patients admitted tothe PIW , of whom 75 were included in this study. Five patients(6. 7%) died before the 24-hour lactate collection and 39 patients(52.0%) died during the study. Blood lactate levels of ~ 4mmol;Lat the first and 24-hour specimens were associated with mortality(RR 2.9; 95%CI 1.09 to 7 .66 and RR 4.92; 95%CI 1.77 to 13.65,respectively). Lactate clearance of less than 10% at 24 hours(adjusted RR 5.3; 95% CI 1.1 to 24.5) had a significantly greaterrisk fo llowed by septic shock (adjusted RR 1.54; 95%CI 1.36 to6.4 7) due to mortality.Conclusion In children with sepsis there is a greater risk of mortalityin those with increasing or persistently high serial blood lactatelevels, as shown by less than 10% lactate clearance at 24-hours afterPIW admission.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hiroshi Fukuma ◽  
Taka-aki Nakada ◽  
Tadanaga Shimada ◽  
Takashi Shimazui ◽  
Tuerxun Aizimu ◽  
...  

Abstract The blood lactate level is used to guide the management of trauma patients with circulatory disturbance. We hypothesized that blood lactate levels at the scene (Lac scene) could improve the prediction for immediate interventions for hemorrhage. We prospectively measured blood lactate levels and assessed retrospectively in 435 trauma patients both at the scene and on arrival at the emergency room (ER) of a level I trauma center. Primary outcome was immediate intervention for hemorrhage defined as surgical/radiological intervention and/or blood transfusion within 24 h. Physiological variables plus Lac scene significantly increased the predictive value for immediate intervention (area under the curve [AUC] 0.882, 95% confidence interval [CI] 0.839–0.925) compared to that using physiological variables only (AUC 0.837, 95% CI 0.787–0.887, P = 0.0073), replicated in the validation cohort (n = 85). There was no significant improvement in predicting value of physiological variables plus Lac scene for massive transfusion compared to physiological variables (AUC 0.903 vs 0.895, P = 0.32). The increased blood lactate level per minute from scene to ER was associated with increased probability for immediate intervention (P < 0.0001). Both adding Lac scene to physiological variables and the temporal elevation of blood lactate levels from scene to ER could improve the prediction of the immediate intervention.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Ichiro Hirayama ◽  
Toshifumi Asada ◽  
Miyuki Yamamoto ◽  
Naoki Hayase ◽  
Takahiro Hiruma ◽  
...  

Abstract Background Several clinical guidelines recommend monitoring blood lactate levels and central venous oxygen saturation for hemodynamic management of patients with sepsis. We hypothesized that carbon dioxide production (VCO2) and oxygen extraction (VO2) evaluated using indirect calorimetry (IC) might provide additional information to understand the dynamic metabolic changes in sepsis. Methods Adult patients with sepsis who required mechanical ventilation in the intensive care unit (ICU) of our hospital between September 2019 and March 2020 were prospectively enrolled. Sepsis was diagnosed according to Sepsis-3. Continuous measurement of VCO2 and VO2 using IC for 2 h was conducted within 24 h after tracheal intubation, and the changes in VCO2 and VO2 over 2 h were calculated as the slopes by linear regression analysis. Furthermore, temporal lactate changes were evaluated. The primary outcome was 28-day survival. Results Thirty-four patients with sepsis were enrolled, 26 of whom survived 76%. Significant differences in the slope of VCO2 (− 1.412 vs. − 0.446) (p = 0.012) and VO2 (− 2.098 vs. − 0.851) (p = 0.023) changes were observed between non-survivors and survivors. Of note, all eight non-survivors and 17 of the 26 survivors showed negative slopes of VCO2 and VO2 changes. For these patients, 17 survivors had a median lactate of − 2.4% changes per hour (%/h), whereas non-survivors had a median lactate of 2.6%/hr (p = 0.023). Conclusions The non-survivors in this study showed temporal decreases in both VCO2 and VO2 along with lactate elevation. Monitoring the temporal changes in VCO2 and VO2 along with blood lactate levels may be useful in predicting the prognosis of sepsis.


1988 ◽  
Vol 135 (1) ◽  
pp. 119-131 ◽  
Author(s):  
C. L. Milligan ◽  
D. G. McDonald

A bolus injection of [14C]lactate was used to measure lactate turnover rates at rest and during recovery from exhaustive exercise in coho salmon (Oncorhynchus kisutch) and starry flounder (Platichthys stellatus). At rest, lactate turnover rate in salmon was almost double that in flounder (1.33 versus 0.76 mumol min-1 kg-1), which reflected the higher blood lactate level in salmon (1.00 versus 0.12 mmol l-1). From 2 to 4 h after exercise, when blood lactate levels were at their peak and constant, turnover rates were elevated in both species, though to a greater extent in salmon than in flounder (11.88 versus 2.27 mumol min-1 kg-1). Lactate concentration and turnover rate were linearly correlated in both species. The higher turnover rate in salmon was solely a consequence of the higher blood lactate levels since, at similar blood lactate concentrations, turnover rates in flounder and salmon were the same. Therefore, the lower blood lactate levels in flounder after exercise were not a consequence of higher turnover. In neither species was the turnover rate adequate to account for the rate of lactate clearance from the muscle, suggesting a large portion was retained within the muscle and metabolized in situ. Furthermore, following injection of [14C]lactate, greater than 80% of the total blood activity was recovered as lactate, indicating that little label was incorporated into other products (e.g. glucose). These data suggest that the Cori cycle plays a minimal role in the metabolism of lactate in salmon and flounder. Furthermore, at least in flounder, there was no correlation between the kinetics of lactate clearance and O2 consumption, suggesting that the classical concept of ‘O2 debt’ is not applicable in this species.


2021 ◽  
Author(s):  
Megumi Hoshiai ◽  
Kaori Ochiai ◽  
Yuma Tamura ◽  
Tomoki Tsurumi ◽  
Masato Terashima ◽  
...  

AbstractNeuromuscular electrical stimulation has been used to treat cardiovascular diseases and other types of muscular dysfunction. A novel whole-body neuromuscular electrical stimulation (WB-NMES) wearable device may be beneficial when combined with voluntary exercises. This study aimed to investigate the safety and effects of the WB-NMES on hemodynamics, arrhythmia, and sublingual microcirculation. The study included 19 healthy Japanese volunteers, aged 22–33 years, who were not using any medication. Electrocardiogram (ECG), echocardiography, and blood sampling were conducted before a 20-min WB-NMES session and at 0 and 10 min after termination of WB-NMES. Their tolerable maximum intensity was recorded using numeric rating scale. Arrhythmia was not detected during neuromuscular electrical stimulation or during 10 min of recovery. Blood pressure, heart rate, left ventricular ejection fraction, and diastolic function remained unchanged; however, mild mitral regurgitation was transiently observed during WB-NMES in a single male participant. A decrease in blood glucose and an increase in blood lactate levels were observed, but no changes in blood fluidity, sublingual microcirculation, blood levels of noradrenaline, or oxidative stress were shown. WB-NMES is safe and effective for decreasing blood glucose and increasing blood lactate levels without changing the blood fluidity or microcirculation in healthy people.


Pharmacology ◽  
2017 ◽  
Vol 100 (5-6) ◽  
pp. 218-228 ◽  
Author(s):  
Mu-chao Wu ◽  
Wei-ran Ye ◽  
Yi-jia Zheng ◽  
Shan-shan Zhang

Metformin (MET) is the first-line drug for treating type 2 diabetes mellitus (T2DM). However, MET increases blood lactate levels in patients with T2DM. Lactate possesses proinflammatory properties and causes insulin resistance (IR). Oxamate (OXA), a lactate dehydrogenase inhibitor, can decrease tissue lactate production and blood lactate levels. This study was conducted to examine the effects of the combination of OXA and MET on inflammation, and IR in diabetic db/db mice. Supplementation of OXA to MET led to lowered tissue lactate production and serum lactate levels compared to MET alone, accompanied with further decreased tissue and blood levels of pro-inflammatory cytokines, along with better insulin sensitivity, beta-cell mass, and glycemic control in diabetic db/db mice. These results show that OXA enhances the anti-inflammatory and insulin-sensitizing effects of MET through the inhibition of tissue lactate production in db/db mice.


Sign in / Sign up

Export Citation Format

Share Document