Comparison of SpO2 to PaO2 based markers of lung disease severity for children with acute lung injury*

2012 ◽  
Vol 40 (4) ◽  
pp. 1309-1316 ◽  
Author(s):  
Robinder G. Khemani ◽  
Neal J. Thomas ◽  
Vani Venkatachalam ◽  
Jason P. Scimeme ◽  
Ty Berutti ◽  
...  
Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 441
Author(s):  
Fanny Pineau ◽  
Davide Caimmi ◽  
Sylvie Taviaux ◽  
Maurane Reveil ◽  
Laura Brosseau ◽  
...  

Cystic fibrosis (CF) is a chronic genetic disease that mainly affects the respiratory and gastrointestinal systems. No curative treatments are available, but the follow-up in specialized centers has greatly improved the patient life expectancy. Robust biomarkers are required to monitor the disease, guide treatments, stratify patients, and provide outcome measures in clinical trials. In the present study, we outline a strategy to select putative DNA methylation biomarkers of lung disease severity in cystic fibrosis patients. In the discovery step, we selected seven potential biomarkers using a genome-wide DNA methylation dataset that we generated in nasal epithelial samples from the MethylCF cohort. In the replication step, we assessed the same biomarkers using sputum cell samples from the MethylBiomark cohort. Of interest, DNA methylation at the cg11702988 site (ATP11A gene) positively correlated with lung function and BMI, and negatively correlated with lung disease severity, P. aeruginosa chronic infection, and the number of exacerbations. These results were replicated in prospective sputum samples collected at four time points within an 18-month period and longitudinally. To conclude, (i) we identified a DNA methylation biomarker that correlates with CF severity, (ii) we provided a method to easily assess this biomarker, and (iii) we carried out the first longitudinal analysis of DNA methylation in CF patients. This new epigenetic biomarker could be used to stratify CF patients in clinical trials.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Lisa E. Gralinski ◽  
Armand Bankhead ◽  
Sophia Jeng ◽  
Vineet D. Menachery ◽  
Sean Proll ◽  
...  

ABSTRACT Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV. IMPORTANCE Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and 2003, and infected patients developed an atypical pneumonia, acute lung injury (ALI), and acute respiratory distress syndrome (ARDS) leading to pulmonary fibrosis and death. We identified sets of differentially expressed genes that contribute to ALI and ARDS using lethal and sublethal SARS-CoV infection models. Mathematical prioritization of our gene sets identified the urokinase and extracellular matrix remodeling pathways as the most enriched pathways. By infecting Serpine1-knockout mice, we showed that the urokinase pathway had a significant effect on both lung pathology and overall SARS-CoV pathogenesis. These results demonstrate the effective use of unbiased modeling techniques for identification of high-priority host targets that regulate disease outcomes. Similar transcriptional signatures were noted in 1918 and 2009 H1N1 influenza virus-infected mice, suggesting a common, potentially treatable mechanism in development of virus-induced ALI.


2018 ◽  
Vol 53 (4) ◽  
pp. 426-430 ◽  
Author(s):  
Laura Berdah ◽  
Jessica Taytard ◽  
Sophie Leyronnas ◽  
Annick Clement ◽  
Pierre-Yves Boelle ◽  
...  

Immunity ◽  
2017 ◽  
Vol 46 (2) ◽  
pp. 301-314 ◽  
Author(s):  
Dania Zhivaki ◽  
Sébastien Lemoine ◽  
Annick Lim ◽  
Ahsen Morva ◽  
Pierre-Olivier Vidalain ◽  
...  

2012 ◽  
Vol 11 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Harriet Corvol ◽  
Julie Beucher ◽  
Pierre-Yves Boëlle ◽  
Pierre-François Busson ◽  
Céline Muselet-Charlier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document