Regulation of Gene Expression in Rats With Heart Failure Treated With the Thyroid Hormone Analog 3,5-Diiodothyropropionic Acid (DITPA) and the Combination of DITPA and Captopril

2007 ◽  
Vol 50 (5) ◽  
pp. 526-534 ◽  
Author(s):  
Niranjan Maitra ◽  
Cynthia Adamson ◽  
Kevin Greer ◽  
Scott Klewer ◽  
James Hoying ◽  
...  
Cardiology ◽  
2002 ◽  
Vol 97 (4) ◽  
pp. 218-225 ◽  
Author(s):  
Eugene Morkin ◽  
Gregory Pennock ◽  
Peter H. Spooner ◽  
Joseph J. Bahl ◽  
Katherine Underhill Fox ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1120 ◽  
Author(s):  
Levi Evans ◽  
Bradley Ferguson

Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.


2006 ◽  
Vol 39 (4) ◽  
Author(s):  
PATRICIA VARELA ◽  
GLADYS TAPIA ◽  
VIRGINIA FERNÁNDEZ ◽  
LUIS A VIDELA

Author(s):  
Arthur M. Feldman ◽  
Vinnette T. Edwards ◽  
Jennifer E. Lawrence ◽  
Randall E. Williams ◽  
Warren D. Rosenblum

Endocrinology ◽  
2012 ◽  
Vol 153 (6) ◽  
pp. 2919-2928 ◽  
Author(s):  
Arturo Hernandez ◽  
Beatriz Morte ◽  
Mónica M. Belinchón ◽  
Ainhoa Ceballos ◽  
Juan Bernal

Thyroid hormones regulate brain development and function through the control of gene expression, mediated by binding of T3 to nuclear receptors. Brain T3 concentration is tightly controlled by homeostatic mechanisms regulating transport and metabolism of T4 and T3. We have examined the role of the inactivating enzyme type 3 deiodinase (D3) in the regulation of 43 thyroid hormone-dependent genes in the cerebral cortex of 30-d-old mice. D3 inactivation increased slightly the expression of two of 22 positively regulated genes and significantly decreased the expression of seven of 21 negatively regulated genes. Administration of high doses of T3 led to significant changes in the expression of 12 positive genes and three negative genes in wild-type mice. The response to T3 treatment was enhanced in D3-deficient mice, both in the number of genes and in the amplitude of the response, demonstrating the role of D3 in modulating T3 action. Comparison of the effects on gene expression observed in D3 deficiency with those in hypothyroidism, hyperthyroidism, and type 2 deiodinase (D2) deficiency revealed that the negative genes are more sensitive to D2 and D3 deficiencies than the positive genes. This observation indicates that, in normal physiological conditions, D2 and D3 play critical roles in maintaining local T3 concentrations within a very narrow range. It also suggests that negatively and positively regulated genes do not have the same physiological significance or that their regulation by thyroid hormone obeys different paradigms at the molecular or cellular levels.


2005 ◽  
Vol 53 (1) ◽  
pp. S121.4-S121
Author(s):  
M. C. Reed ◽  
B. D. Lowes ◽  
M. Cantu ◽  
W. Minobe ◽  
E. Wolfe ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Takehiro Kamo

Introduction: Gut microbiota have developed a close relationship with human host during the co-evolutionary process for millions of years, and they play an essential role in the maintenance of host homeostasis. There is accumulating evidence that an imbalance in the gut microbial communities, referred to as dysbiosis, is associated with human pathologies including cardiovascular diseases. We and others have recently demonstrated that heart failure is associated with gut microbiota dysbiosis using 16S ribosomal RNA gene sequencing of fecal samples from patients with heart failure. This finding suggests a potential significance of gut microbiota in the pathophysiology of heart failure. However, the link between the gut microbiota and the heart remains largely unclear. Hypothesis: We hypothesized that manipulation of gut microbiota influences the structure of the heart. Methods: To determine the effects of gut microbiota depletion, cardiac structure and gene expression were evaluated in mice following treatment with orally administered broad-spectrum antibiotic cocktail. We subsequently explored the effects of administration of a single antibiotic agent on myocardial structure. Results: Antibiotic cocktail-treated mice showed a remarkable decrease in myocardial mass and cardiomyocyte size as compared with untreated mice (mean [±SD] ratio of heart weight to body weight, 3.87±0.25 mg/g in 44 antibiotic-treated mice vs. 4.38±0.21 mg/g in 45 untreated mice). The decrease in myocardial mass was associated with substantial changes in gene expression profiles in the heart, including the expression of genes encoding sarcomere proteins and extracellular matrix proteins. In addition, oral treatment with ampicillin alone led to a significant decrease in myocardial mass (mean [±SD] ratio of heart weight to body weight, 3.52±0.24 mg/g in 11 ampicillin-treated mice vs. 4.10±0.24 mg/g in 12 untreated mice). Conclusions: These results suggest that gut microbiota may modulate myocardial mass through the remote regulation of gene expression in the heart. Our study indicates an intimate relationship between the gut microbiota and the heart, and suggests the potential efficacy of manipulating gut microbiota in the prevention and treatment of heart failure.


Author(s):  
Joachim Krebs

: Thyroid hormones influence brain development through regulation of gene expression. Ca2+-dependent gene expression is a major pathway controlled by the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) which in turn is induced by the thyroid hormone T3 as also demonstrated in a mouse embryonic stem cell line. In addition, T3 is controlling the expression of neurexin, synaptotagmin2 (SYT2), synaptotagmin-related gene1 (SRG1) and a number of other genes, involved in neurotransmitter release in a Ca2+-dependent manner. It has been noticed that the development of dopaminergic neurons by evoking significant calcium entry occurs through TRPC calcium channels. It also was demonstrated that the T3-mediated development of an early neuronal network is characteristic for depolarizing GABAergic neurons concomitant with intracellular calcium transients. An important aspect of T3-dependent regulation of gene expression in the developing brain is its modulation by the transcription activator COUP-TF1. Regulation of alternative splicing by CaMKIV is another important aspect for embryonal neural development since it can lead to the expression of PMCA1a, the neuronal specific isoform of the plasma membrane calcium pump. Maternal hypothyroidism or CaMKIV deficiency can have a severe influence on fetal brain development.


Sign in / Sign up

Export Citation Format

Share Document