Cotton-Derived Oxidized Cellulose in Minimally Invasive Thoracic Surgery

Author(s):  
Biruta Witte ◽  
Stefan M. Kroeber ◽  
Hubertus Hillebrand ◽  
Michael Wolf ◽  
Martin Huertgen

Objective The aim of this study was to identify resorption, clinical performance, and safety of cotton-derived oxidized cellulose gauze applied as a hemostat in minimally invasive oncologic thoracic surgery. Methods This is a pilot prospective noncomparative observational human in vivo study. A piece of cotton-derived oxidized cellulose gauze measuring 5 × 20 cm was inserted into the subcarinal space of patients with potentially resectable lung carcinoma at the time of video-assisted mediastinoscopic lymphadenectomy and reexamined several days later for macroscopic and histologic evaluation at the time of subsequent lung resection. The primary endpoint was the local situation at the implantation site described by cellulose remnants, fluid collections, and adhesions. The secondary endpoint was safety, described by the number of adverse events and surgical reinterventions. Results Twenty-five consecutive eligible patients with potentially resectable lung carcinoma were included. The desired hemostatic effect was achieved in all cases. No adverse events were observed. At re-exploration 10.5 (5–28) days later, the cellulose gauze was found to lose its solid structure from the fifth day on. Remnants were last detected 14 days after insertion. The implantation site exhibited no inflammatory changes and a remarkable small amount of fluid collections and adhesions. Conclusions Mediastinal application of cotton-derived oxidized cellulose is safe and effective. A piece of gauze measuring 5 × 20 cm seems to be absorbed completely within 15 days, thus precluding any interference with oncologic restaging and follow-up. The absence of relevant adhesions facilitates further surgical procedures. Larger comparative confirmatory studies are required. For large-scale resorption studies, our clinical model should be translated into a porcine model.

Author(s):  
Biruta Witte ◽  
Stefan M. Kroeber ◽  
Hubertus Hillebrand ◽  
Michael Wolf ◽  
Martin Huertgen

2016 ◽  
Vol 77 (S 01) ◽  
Author(s):  
Ezequiel Goldschmidt ◽  
Jorge Rasmussen ◽  
Joseph Chabot ◽  
Monica Loressi ◽  
Marcelo Ielpi ◽  
...  

1969 ◽  
Vol 22 (03) ◽  
pp. 577-583 ◽  
Author(s):  
M.M.P Paulssen ◽  
A.C.M.G.B Wouterlood ◽  
H.L.M.A Scheffers

SummaryFactor VIII can be isolated from plasma proteins, including fibrinogen by chromatography on agarose. The best results were obtained with Sepharose 6B. Large scale preparation is also possible when cryoprecipitate is separated by chromatography. In most fractions containing factor VIII a turbidity is observed which may be due to the presence of chylomicrons.The purified factor VIII was active in vivo as well as in vitro.


1997 ◽  
Vol 78 (04) ◽  
pp. 1202-1208 ◽  
Author(s):  
Marianne Kjalke ◽  
Julie A Oliver ◽  
Dougald M Monroe ◽  
Maureane Hoffman ◽  
Mirella Ezban ◽  
...  

SummaryActive site-inactivated factor VIIa has potential as an antithrombotic agent. The effects of D-Phe-L-Phe-L-Arg-chloromethyl ketone-treated factor VIla (FFR-FVIIa) were evaluated in a cell-based system mimicking in vivo initiation of coagulation. FFR-FVIIa inhibited platelet activation (as measured by expression of P-selectin) and subsequent large-scale thrombin generation in a dose-dependent manner with IC50 values of 1.4 ± 0.8 nM (n = 8) and 0.9 ± 0.7 nM (n = 7), respectively. Kd for factor VIIa binding to monocytes ki for FFR-FVIIa competing with factor VIIa were similar (11.4 ± 0.8 pM and 10.6 ± 1.1 pM, respectively), showing that FFR-FVIIa binds to tissue factor in the tenase complex with the same affinity as factor VIIa. Using platelets from volunteers before and after ingestion of aspirin (1.3 g), there were no significant differences in the IC50 values of FFR-FVIIa [after aspirin ingestion, the IC50 values were 1.7 ± 0.9 nM (n = 8) for P-selectin expression, p = 0.37, and 1.4 ± 1.3 nM (n = 7) for thrombin generation, p = 0.38]. This shows that aspirin treatment of platelets does not influence the inhibition of tissue factor-initiated coagulation by FFR-FVIIa, probably because thrombin activation of platelets is not entirely dependent upon expression of thromboxane A2.


2020 ◽  
Vol 26 ◽  
Author(s):  
Luíza Dantas-Pereira ◽  
Edézio F. Cunha-Junior ◽  
Valter V. Andrade-Neto ◽  
John F. Bower ◽  
Guilherme A. M. Jardim ◽  
...  

: Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo are essential for the development of a novel, specific and safe derivative, minimizing adverse effects.


Author(s):  
Stefano Vassanelli

Establishing direct communication with the brain through physical interfaces is a fundamental strategy to investigate brain function. Starting with the patch-clamp technique in the seventies, neuroscience has moved from detailed characterization of ionic channels to the analysis of single neurons and, more recently, microcircuits in brain neuronal networks. Development of new biohybrid probes with electrodes for recording and stimulating neurons in the living animal is a natural consequence of this trend. The recent introduction of optogenetic stimulation and advanced high-resolution large-scale electrical recording approaches demonstrates this need. Brain implants for real-time neurophysiology are also opening new avenues for neuroprosthetics to restore brain function after injury or in neurological disorders. This chapter provides an overview on existing and emergent neurophysiology technologies with particular focus on those intended to interface neuronal microcircuits in vivo. Chemical, electrical, and optogenetic-based interfaces are presented, with an analysis of advantages and disadvantages of the different technical approaches.


Author(s):  
Hugues Duffau

Investigating the neural and physiological basis of language is one of the most important challenges in neurosciences. Direct electrical stimulation (DES), usually performed in awake patients during surgery for cerebral lesions, is a reliable tool for detecting both cortical and subcortical (white matter and deep grey nuclei) regions crucial for cognitive functions, especially language. DES transiently interacts locally with a small cortical or axonal site, but also nonlocally, as the focal perturbation will disrupt the entire subnetwork sustaining a given function. Thus, in contrast to functional neuroimaging, DES represents a unique opportunity to identify with great accuracy and reproducibility, in vivo in humans, the structures that are actually indispensable to the function, by inducing a transient virtual lesion based on the inhibition of a subcircuit lasting a few seconds. Currently, this is the sole technique that is able to directly investigate the functional role of white matter tracts in humans. Thus, combining transient disturbances elicited by DES with the anatomical data provided by pre- and postoperative MRI enables to achieve reliable anatomo-functional correlations, supporting a network organization of the brain, and leading to the reappraisal of models of language representation. Finally, combining serial peri-operative functional neuroimaging and online intraoperative DES allows the study of mechanisms underlying neuroplasticity. This chapter critically reviews the basic principles of DES, its advantages and limitations, and what DES can reveal about the neural foundations of language, that is, the large-scale distribution of language areas in the brain, their connectivity, and their ability to reorganize.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1670 ◽  
Author(s):  
Wölfle-Roos JV ◽  
Katmer Amet B ◽  
Fiedler J ◽  
Michels H ◽  
Kappelt G ◽  
...  

Background: Uncemented implants are still associated with several major challenges, especially with regard to their manufacturing and their osseointegration. In this study, a novel manufacturing technique—an optimized form of precision casting—and a novel surface modification to promote osseointegration—calcium and phosphorus ion implantation into the implant surface—were tested in vivo. Methods: Cylindrical Ti6Al4V implants were inserted bilaterally into the tibia of 110 rats. We compared two generations of cast Ti6Al4V implants (CAST 1st GEN, n = 22, and CAST 2nd GEN, n = 22) as well as cast 2nd GEN Ti6Al4V implants with calcium (CAST + CA, n = 22) and phosphorus (CAST + P, n = 22) ion implantation to standard machined Ti6Al4V implants (control, n = 22). After 4 and 12 weeks, maximal pull-out force and bone-to-implant contact rate (BIC) were measured and compared between all five groups. Results: There was no significant difference between all five groups after 4 weeks or 12 weeks with regard to pull-out force (p > 0.05, Kruskal Wallis test). Histomorphometric analysis showed no significant difference of BIC after 4 weeks (p > 0.05, Kruskal–Wallis test), whereas there was a trend towards a higher BIC in the CAST + P group (54.8% ± 15.2%), especially compared to the control group (38.6% ± 12.8%) after 12 weeks (p = 0.053, Kruskal–Wallis test). Conclusion: In this study, we found no indication of inferiority of Ti6Al4V implants cast with the optimized centrifugal precision casting technique of the second generation compared to standard Ti6Al4V implants. As the employed manufacturing process holds considerable economic potential, mainly due to a significantly decreased material demand per implant by casting near net-shape instead of milling away most of the starting ingot, its application in manufacturing uncemented implants seems promising. However, no significant advantages of calcium or phosphorus ion implantation could be observed in this study. Due to the promising results of ion implantation in previous in vitro and in vivo studies, further in vivo studies with different ion implantation conditions should be considered.


2016 ◽  
Vol 23 (6) ◽  
pp. 595-604 ◽  
Author(s):  
Jae Hyoung Cho ◽  
Hun-Sung Kim ◽  
Seung Hyun Yoo ◽  
Chang Hee Jung ◽  
Woo Je Lee ◽  
...  

Introduction The aim of this study was to improve the quality of diabetes control and evaluate the efficacy of an Internet-based integrated healthcare system for diabetes management and safety. Methods We conducted a large-scale, multi-centre, randomized clinical trial involving 484 patients. Patients in the intervention group ( n = 244) were treated with the Internet-based system for six months, while the control group ( n = 240) received the usual outpatient management over the same period. HbA1c, blood chemistries, anthropometric parameters, and adverse events were assessed at the beginning of the study, after three months, and the end of the study. Results There were no initial significant differences between the groups with respect to demographics and clinical parameters. Upon six-month follow-up, HbA1c levels were significantly decreased from 7.86 ± 0.69% to 7.55 ± 0.86% within the intervention group ( p < 0.001) compared to 7.81 ± 0.66% to 7.70 ± 0.88% within the control group. Postprandial glucose reduction was predominant. A subgroup with baseline HbA1c higher than 8% and good compliance achieved a reduction of HbA1c by 0.8 ± 1.05%. Glucose control and waist circumference reduction were more effective in females and subjects older than 40 years of age. There were no adverse events associated with the intervention. Discussion This e-healthcare system was effective for glucose control and body composition improvement without associated adverse events in a multi-centre trial. This system may be effective in improving diabetes control in the general population.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cheng Zhou ◽  
Youzhou Yang ◽  
Jiaxin Wang ◽  
Qingyang Wu ◽  
Zhuozhi Gu ◽  
...  

AbstractIn vivo bioprinting has recently emerged as a direct fabrication technique to create artificial tissues and medical devices on target sites within the body, enabling advanced clinical strategies. However, existing in vivo bioprinting methods are often limited to applications near the skin or require open surgery for printing on internal organs. Here, we report a ferromagnetic soft catheter robot (FSCR) system capable of in situ computer-controlled bioprinting in a minimally invasive manner based on magnetic actuation. The FSCR is designed by dispersing ferromagnetic particles in a fiber-reinforced polymer matrix. This design results in stable ink extrusion and allows for printing various materials with different rheological properties and functionalities. A superimposed magnetic field drives the FSCR to achieve digitally controlled printing with high accuracy. We demonstrate printing multiple patterns on planar surfaces, and considering the non-planar surface of natural organs, we then develop an in situ printing strategy for curved surfaces and demonstrate minimally invasive in vivo bioprinting of hydrogels in a rat model. Our catheter robot will permit intelligent and minimally invasive bio-fabrication.


Sign in / Sign up

Export Citation Format

Share Document