scholarly journals The antimicrobial peptide Brevinin-2ISb enhances the innate immune response against methicillin-resistant Staphylococcus aureus by activating DAF-2/DAF-16 signaling in Caenorhabditis elegans, as determined by in vivo imaging

2020 ◽  
Vol 3 (4) ◽  
pp. 205-218
Author(s):  
Hui Xie ◽  
Xu Nie ◽  
Yonghua Zhan ◽  
Qi Zeng ◽  
Xueli Chen ◽  
...  
mBio ◽  
2021 ◽  
Author(s):  
Elodie Ramond ◽  
Anne Jamet ◽  
Xiongqi Ding ◽  
Daniel Euphrasie ◽  
Clémence Bouvier ◽  
...  

The pathogenicity of methicillin-resistant S. aureus (MRSA) strains relies on their ability to produce a wide variety of tightly regulated virulence factors. Current in vivo models to analyze host-pathogen interactions are limited and difficult to manipulate.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1731
Author(s):  
Yu Maw Htwe ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
Mounica Bandela ◽  
...  

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


Sign in / Sign up

Export Citation Format

Share Document