scholarly journals Three-dimensional (3D) Printed Model to Plan the Endoscopic Treatment of Upper Airway Stenosis

2018 ◽  
Vol 25 (4) ◽  
pp. 349-354 ◽  
Author(s):  
Alfonso Fiorelli ◽  
Roberto Scaramuzzi ◽  
Ivana Minerva ◽  
Emanuele De Ruberto ◽  
Teresa Califano ◽  
...  
1996 ◽  
Vol 35 (6) ◽  
pp. 863
Author(s):  
Won Ho Jang ◽  
Dae Young Yoon ◽  
Sang Hoon Bae ◽  
Young Soo Rho ◽  
Yin Gyo Jung

Author(s):  
REZA TABE ◽  
ROOHOLLAH RAFEE ◽  
MOHAMMAD SADEGH VALIPOUR ◽  
GOODARZ AHMADI

In this study, a realistic respiratory airway model extending from oral to the end of the trachea including all the key details of the passage was produced. A series of CT scan images were used to generate the topological data of airway cross-sections that were used to generate the computational model, as well as the three-dimensional (3D) printed model of the passage for experimental study. The airflow velocity field and pressure drop in the airway for different breathing rates of 5, 7.5, 10, and 12.5[Formula: see text]L/min were investigated numerically (by laminar and transition models) and experimentally. The velocity distributions, pressure variation, and streamlines along the oral–trachea airway model were studied. The maximum pressure drop was shown to occur in the narrowest part of the larynx region. It was also concluded that the laryngeal jet could significantly influence the airway flow patterns in the trachea. A comparison between the numerical results and experimental data showed that the transition [Formula: see text]–kl–[Formula: see text] model can give better predictions of pressure losses, especially for flow rates higher than 10[Formula: see text]L/min. The simulation results for the velocity profiles in the trachea were also compared with the available particle image velocimetry (PIV) data and earlier simulations. Despite inter-personal variability and difference in the flow regime, the qualitative agreement was found.


Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050051
Author(s):  
Khawla Essassi ◽  
Jean-Luc Rebiere ◽  
Abderrahim El Mahi ◽  
Mohamed Amine Ben Souf ◽  
Anas Bouguecha ◽  
...  

In this research contribution, the static behavior and failure mechanisms are developed for a three-dimensional (3D) printed dogbone, auxetic structure and sandwich composite using acoustic emissions (AEs). The skins, core and whole sandwich are manufactured using the same bio-based material which is polylactic acid reinforced with micro-flax fibers. Tensile tests are conducted on the skins and the core while bending tests are conducted on the sandwich composite. Those tests are carried out on four different auxetic densities in order to investigate their effect on the mechanical and damage properties of the materials. To monitor the invisible damage and damage propagation, a highly sensitive AE testing method is used. It is found that the sandwich with high core density displays advanced mechanical properties in terms of bending stiffness, shear stiffness, facing bending stress and core shear stress. In addition, the AE data points during testing present an amplitude range of 40–85[Formula: see text]dB that characterizes visible and invisible damage up to failure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Doo-Hwan Kim ◽  
Eunseo Gwon ◽  
Junheok Ock ◽  
Jong-Woo Choi ◽  
Jee Ho Lee ◽  
...  

AbstractIn children with mandibular hypoplasia, airway management is challenging. However, detailed cephalometric assessment data for this population are sparse. The aim of this study was to find risk factors for predicting difficult airways in children with mandibular hypoplasia, and compare upper airway anatomical differences using three-dimensional computed tomography (3D CT) between children with mandibular hypoplasia and demographically matched healthy controls. There were significant discrepancies in relative tongue position (P < 0.01) and anterior distance of the hyoid bone (P < 0.01) between patients with mandibular hypoplasia and healthy controls. All mandibular measures were significantly different between the two groups, except for the height of the ramus of the mandible. After adjusting for age and sex, the anterior distance of hyoid bone and inferior pogonial angle were significantly associated with a difficult airway (P = 0.01 and P = 0.02). Quantitative analysis of upper airway structures revealed significant discrepancies, including relative tongue position, hyoid distance, and mandible measures between patients with mandibular hypoplasia and healthy controls. The anterior distance of the hyoid bone and inferior pogonial angle may be risk factors for a difficult airway in patients with mandibular hypoplasia.


2020 ◽  
Vol 53 (03) ◽  
pp. 324-334
Author(s):  
Gautam Biswas

Abstract Reconstruction of the complex anatomy and aesthetics of the midface is often a challenge. A careful understanding of this three-dimensional (3D) structure is necessary. Anticipating the extent of excision and its planning following oncological resections is critical.In the past over two decades, with the advances in microsurgical procedures, contributions toward the reconstruction of this area have generated interest. Planning using digital imaging, 3D printed models, osseointegrated implants, and low-profile plates, has favorably impacted the outcome. However, there are still controversies in the management: to use single composite tissues versus multiple tissues; implants versus autografts; vascularized versus nonvascularized bone; prosthesis versus reconstruction.This article explores the present available options in maxillary reconstruction and outlines the approach in the management garnered from past publications and experiences.


2021 ◽  
pp. 112067212110000
Author(s):  
Annabel LW Groot ◽  
Jelmer S Remmers ◽  
Roel JHM Kloos ◽  
Peerooz Saeed ◽  
Dyonne T Hartong

Purpose: Recurrent contracted sockets are complex situations where previous surgeries have failed, disabling the wear of an ocular prosthesis. A combined method of surgery and long-term fixation using custom-made, three-dimensional (3D) printed conformers is evaluated. Methods: Retrospective case series of nine patients with recurrent excessive socket contraction and inability to wear a prosthesis, caused by chemical burns ( n = 3), fireworks ( n = 3), trauma ( n = 2) and enucleation and radiotherapy at childhood due to optic nerve glioma ( n = 1) with three average previous socket surgeries (range 2–6). Treatment consisted of a buccal mucosal graft and personalized 3D-printed conformer designed to be fixated to the periosteum and tarsal plates for minimal 2 months. Primary outcome was the retention of an ocular prosthesis. Secondary outcome was the need for additional surgeries. Results: Outcomes were measured at final follow-up between 7 and 36 months postoperatively (mean 20 months). Eight cases were able to wear an ocular prosthesis after 2 months. Three cases initially treated for only the upper or only the lower fornix needed subsequent surgery for the opposite fornix for functional reasons. Two cases had later surgery for cosmetic improvement of upper eyelid position. Despite pre-existing lid abnormalities (scar, entropion, lash deficiency), cosmetic outcome was judged highly acceptable in six cases because of symmetric contour and volume, and reasonably acceptable in the remaining two. Conclusions: Buccal mucosal transplant fixated with a personalized 3D-designed conformer enables retention of a well-fitted ocular prosthesis in previously failed socket surgeries. Initial treatment of both upper and lower fornices is recommended to avoid subsequent surgeries for functional reasons.


Author(s):  
Yanyan Ma ◽  
Peng Ding ◽  
Lanlan Li ◽  
Yang Liu ◽  
Ping Jin ◽  
...  

AbstractHeart diseases remain the top threat to human health, and the treatment of heart diseases changes with each passing day. Convincing evidence shows that three-dimensional (3D) printing allows for a more precise understanding of the complex anatomy associated with various heart diseases. In addition, 3D-printed models of cardiac diseases may serve as effective educational tools and for hands-on simulation of surgical interventions. We introduce examples of the clinical applications of different types of 3D printing based on specific cases and clinical application scenarios of 3D printing in treating heart diseases. We also discuss the limitations and clinically unmet needs of 3D printing in this context.


2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


Sign in / Sign up

Export Citation Format

Share Document