Degradation Kinetics of Methionine5-Enkephalin by Cerebrospinal Fluid: In Vitro Studies

2011 ◽  
Vol 18 (1) ◽  
pp. 9-13
Author(s):  
Aron D Mosnaim ◽  
FuCheng Chuang ◽  
Marion E Wolf
2018 ◽  
Vol 40 (1) ◽  
pp. 42569
Author(s):  
Francisco Allan Leandro de Carvalho ◽  
Percivaldo Xavier Resende ◽  
Clístenes Amorim Benicio ◽  
Jackson De Oliveira Siqueira ◽  
Daniel Ribeiro Menezes ◽  
...  

The objective this study was to evaluate the effect of maniçoba supplementation in sugar cane silage with respect to chemical-bromatological composition and the in vitro degradation kinetics of the silage. This experiment was conducted in a completely randomized design with four treatments (maniçoba levels: 0, 20, 30, and 40%) and six repetitions. Silage samples were analyzed for their chemical-bromatological composition, digestible energy, metabolizable energy, total digestible nutrients, in vitro gas production and degradability parameters. The silage with higher inclusion level had better bromatological composition (p < 0.05) than the silage without maniçoba for CP, NDF, ADF and MM (6.49, 56.64, 38.66 and 4.52% versus 2.21, 70.96, 49.95 and 2.78%). Higher ME content (2.35 MJ kg-1 MS versus 1.85 MJ kg-1 MS), DE (2.87 Mcal kg-1 MS versus 2.25 Mcal kg-1 MS) and TDN (65.16% versus 51.11%), respectively. The highest values for gas production were also observed in silage with added maniçoba due to higher NFC content (34.87%). With an increase in the proportion of maniçoba, there was an increase in the soluble a fraction, b fraction, and thus a higher effective degradability of dry matter (46.56%). The addition of maniçoba improves the nutritive value of sugarcane silage.  


2017 ◽  
Vol 48 ◽  
pp. 468-478 ◽  
Author(s):  
Xuan Li ◽  
Chenglin Chu ◽  
Yalin Wei ◽  
Chenxi Qi ◽  
Jing Bai ◽  
...  

2011 ◽  
Vol 399-401 ◽  
pp. 1067-1070
Author(s):  
Chun Yan Li ◽  
Cong Cong Hu ◽  
Zhi Guo Wen ◽  
Sheng Xiong Dong

The method of high performance liquid chromatography (HPLC) is established to determine the content of antibacterial agent — ciprofloxacin (CF) in the degradation solution of ciprofloxacin-polyurethane (CFPU) and investigate the in vitro degradation kinetics by plotting and fitting the cumulative release curves to inspect the effects of different medium and different concentrations on drug release. The results showed that the HPLC method is accurate, reliable and simple. The drug-release of CFPU was bioresponsive and could be accorded with first order kinetics. It was observed that CF was released from CFPU by a combination of diffusion and erosion mechanism, mainly in the manner of diffusion in the absence of infection while erosion mechanism in the presence of infection.


2008 ◽  
Vol 1 (2) ◽  
pp. 142-143 ◽  
Author(s):  
Behzad Eftekhar ◽  
Andrew Hunn

✓The authors report the third case of ventriculoperitoneal shunt blockage due to spontaneous knot formation in the peritoneal catheter that had been placed in a 3.5-year-old boy 8 months earlier. On surgical exploration a double knot was found 10 cm from the distal end of the peritoneal catheter. Although the underlying mechanism remains unknown, the authors used the analogy of related physical studies and true knot formation in the umbilical cord and determined the possible causes as related to the catheter, volume and configuration of the abdomen, and kinetics of the catheter movements. If further study should reveal a significantly higher incidence of this complication, the authors suggest further in vitro studies, designed to investigate the optimal characteristics and safe range of length of peritoneal catheters in different situations.


2013 ◽  
Vol 7 (2) ◽  
Author(s):  
Ibrahim T. Ozbolat ◽  
Michelle Marchany ◽  
Joseph A. Gardella ◽  
Bahattin Koc

Real-time degradation studies of bioresorbable polymers can take weeks, months, and even years to conduct. For this reason, developing and validating mathematical models that describe and predict degradation can provide a means to accelerate the development of materials and devices for controlled drug release. This study aims to develop and experimentally validate a computer-aided model that simulates the hydrolytic degradation kinetics of bioresorbable polymeric micropatterned membranes for tissue engineering applications. Specifically, the model applies to circumstances that are conducive for the polymer to undergo surface erosion. The developed model provides a simulation tool enabling the prediction and visualization of the dynamic geometry of the degrading membrane. In order to validate the model, micropatterned polymeric membranes were hydrolytically degraded in vitro and the morphological changes were analyzed using optical microscopy. The model is then extended to predict spatiotemporal degradation kinetics of variational micropatterned architectures.


2002 ◽  
Vol 54 (2) ◽  
pp. 197-203 ◽  
Author(s):  
B. Maris ◽  
L. Verheyden ◽  
C. Samyn ◽  
P. Augustijns ◽  
R. Kinget ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document