Triple Negative Breast Cancer: Outcome Correlation With Immunohistochemical Detection of Basal Markers

2010 ◽  
Vol 34 (7) ◽  
pp. 956-964 ◽  
Author(s):  
Aye Aye Thike ◽  
Jabed Iqbal ◽  
Poh Yian Cheok ◽  
Angela Phek Yoon Chong ◽  
Gary Man-Kit Tse ◽  
...  
2011 ◽  
Vol 47 (10) ◽  
pp. 1537-1545 ◽  
Author(s):  
Renaud Sabatier ◽  
Jocelyne Jacquemier ◽  
François Bertucci ◽  
Benjamin Esterni ◽  
Pascal Finetti ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Merve Aslan ◽  
En-Chi Hsu ◽  
Fernando J. Garcia-Marques ◽  
Abel Bermudez ◽  
Shiqin Liu ◽  
...  

AbstractBreast cancer remains the second most lethal cancer among women in the United States and triple-negative breast cancer is the most aggressive subtype with limited treatment options. Trop2, a cell membrane glycoprotein, is overexpressed in almost all epithelial cancers. In this study, we demonstrate that Trop2 is overexpressed in triple-negative breast cancer (TNBC), and downregulation of Trop2 delays TNBC cell and tumor growth supporting the oncogenic role of Trop2 in breast cancer. Through proteomic profiling, we discovered a metabolic signature comprised of TALDO1, GPI, LDHA, SHMT2, and ADK proteins that were downregulated in Trop2-depleted breast cancer tumors. The identified oncogene-mediated metabolic gene signature is significantly upregulated in TNBC patients across multiple RNA-expression clinical datasets. Our study further reveals that the metabolic gene signature reliably predicts poor survival of breast cancer patients with early stages of the disease. Taken together, our study identified a new five-gene metabolic signature as an accurate predictor of breast cancer outcome.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 1043-1043
Author(s):  
Wen-Hung Kuo ◽  
Yao-Yin Chang ◽  
Ming-Feng Hou ◽  
Eric Y Chuang ◽  
King-Jen Chang

1043 Background: Triple-negative breast cancer(TNBC) is a subtype of breast cancer with aggressive tumor behavior and distinct disease etiology. Due to the lack of an effective targeted medicine, treatment options for triple-negative breast cancer are few and recurrence rates are high. Although various multi-gene prognostic markers have been proposed for the prediction of breast cancer outcome, most of them were proven clinically useful only for estrogen receptor-positive breast cancers. Reliable identification of triple-negative patients with a favorable prognosis is not yet possible. Methods: Clinicopathological information and microarray data from 157 invasive breast carcinomas were collected at National Taiwan University Hospital from 1995 to 2008. Gene expression data of 51 triple-negative and 106 luminal breast cancers were generated with oligonucleotide microarrays. A prognostic 45-gene signature for triple-negative breast cancer was identified using Student’s t test and receiver operating characteristic analysis. Results: Hierarchical clustering analysis revealed that the majority (94%) of triple-negative breast cancers were tightly clustered together carrying strong basal-like characteristics. A novel 45-gene signature giving 98% predictive accuracy in distant metastasis recurrence was identified in our triple-negative patient cohort. External validation of the prognostic signature in an independent microarray dataset of 59 early-stage triple-negative patients also obtained statistical significance (hazard ratio 2.29, 95% CI 1.04-5.06, Cox P = 0.04), outperforming five other published breast cancer prognostic signatures. The prognostic signature was statistically predictive with the node-negative triple-negative patients in the validation cohort. Conclusions: The 45-gene prognostic signature identified in this study revealed that TGF-β signaling in immune/inflammatory regulation may be critically involved in distant metastatic invasion of TNBC. The 45-gene signature, if further validated, may be a clinically useful tool in risk assessment of metastasis recurrence for early-stage triple-negative patients.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Juliana C. Wortman ◽  
Ting-Fang He ◽  
Shawn Solomon ◽  
Robert Z. Zhang ◽  
Anthony Rosario ◽  
...  

AbstractWhile tumor infiltration by CD8+ T cells is now widely accepted to predict outcomes, the clinical significance of intratumoral B cells is less clear. We hypothesized that spatial distribution rather than density of B cells within tumors may provide prognostic significance. We developed statistical techniques (fractal dimension differences and a box-counting method ‘occupancy’) to analyze the spatial distribution of tumor-infiltrating lymphocytes (TILs) in human triple-negative breast cancer (TNBC). Our results indicate that B cells in good outcome tumors (no recurrence within 5 years) are spatially dispersed, while B cells in poor outcome tumors (recurrence within 3 years) are more confined. While most TILs are located within the stroma, increased numbers of spatially dispersed lymphocytes within cancer cell islands are associated with a good prognosis. B cells and T cells often form lymphocyte clusters (LCs) identified via density-based clustering. LCs consist either of T cells only or heterotypic mixtures of B and T cells. Pure B cell LCs were negligible in number. Compared to tertiary lymphoid structures (TLS), LCs have fewer lymphocytes at lower densities. Both types of LCs are more abundant and more spatially dispersed in good outcomes compared to poor outcome tumors. Heterotypic LCs in good outcome tumors are smaller and more numerous compared to poor outcome. Heterotypic LCs are also closer to cancer islands in a good outcome, with LC size decreasing as they get closer to cancer cell islands. These results illuminate the significance of the spatial distribution of B cells and LCs within tumors.


Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
AJ Robles ◽  
L Du ◽  
S Cai ◽  
RH Cichewicz ◽  
SL Mooberry

Sign in / Sign up

Export Citation Format

Share Document