Inhibition of Nuclear Translocation of Calcineurin Suppresses T-Cell Activation and Prevents Acute Rejection of Donor Hearts

2011 ◽  
Vol 91 (6) ◽  
pp. 597-604 ◽  
Author(s):  
Franziska Panther ◽  
Jörn Strasen ◽  
Martin Czolbe ◽  
Maria Lazariotou ◽  
Natalie Burkard ◽  
...  
1994 ◽  
Vol 14 (12) ◽  
pp. 7933-7942
Author(s):  
R G Bryan ◽  
Y Li ◽  
J H Lai ◽  
M Van ◽  
N R Rice ◽  
...  

Optimal T-cell activation requires both an antigen-specific signal delivered through the T-cell receptor and a costimulatory signal which can be delivered through the CD28 molecule. CD28 costimulation induces the expression of multiple lymphokines, including interleukin 2 (IL-2). Because the c-Rel transcription factor bound to and activated the CD28 response element within the IL-2 promoter, we focused our study on the mechanism of CD28-mediated regulation of c-Rel in human peripheral blood T cells. We showed that CD28 costimulation accelerated the kinetics of nuclear translocation of c-Rel (and its phosphorylated form), p50 (NFKB1), and p65 (RelA). The enhanced nuclear translocation of c-Rel correlated with the stimulation of Il-2 production and T-cell proliferation by several distinct anti-CD28 monoclonal antibodies. This is explained at least in part by the long-term downregulation of I kappa B alpha following CD28 signalling as opposed to phorbol myristate acetate alone. Furthermore, we showed that the c-Rel-containing CD28-responsive complex is enhanced by, but not specific to, CD28 costimulation. Our results indicate that c-Rel is one of the transcription factors targeted by CD28 signalling.


2002 ◽  
Vol 320 (1-2) ◽  
pp. 69-78 ◽  
Author(s):  
Andreas Lun ◽  
Mi Young Cho ◽  
Christian Müller ◽  
Gerhard Staffa ◽  
Wolf Otto Bechstein ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4147-4147
Author(s):  
Kirsty M Cuthill ◽  
Andrea Gail Sherman Buggins ◽  
Pj Chana ◽  
Stephen Devereux

Abstract It has recently become clear that B cell receptor (BCR) activation plays an important role in the pathogenesis of chronic lymphocytic leukaemia (CLL); a fact that is underlined by the marked efficacy of drugs that inhibit components of this pathway. Although the underlying mechanisms remain unclear, CLL BCRs have been shown to recognize a variety of autoantigens and there is evidence of ongoing activation of a number of downstream signaling molecules including Syk, Erk, Akt and the NFkB and NFAT family of transcription factors. In addition to BCR activation, it is thought that signals from other cells in the tumour microenvironment such as T cells, the vascular endothelium and other stromal cells may also play a role in promoting the growth of the disease. In the present study we chose to revisit the effects of ciclosporin (CsA), a calcineurin antagonist with effects on antigen receptor signaling, in CLL. When this agent is used to treat the autoimmune complications of CLL, concurrent responses in the underlying disease have been noted in about 20% of patients, although the underlying mechanism has not been thoroughly investigated. Since CsA primarily inhibits T cell activation we hypothesized that its effects in CLL might be due to a reduction in T cell mediated co-stimulation in the lymph nodes. We therefore investigated the effect of CsA on the activation of CLL B and T cells using conventional and multispectral imaging flow cytometry to measure the expression of activation markers and the nuclear translocation of NFAT and NFKB family transcription factors. Cells were collected from eight unselected patients with a confirmed diagnosis of CLL for each study. T and B cells were purified by negative immunomagnetic selection and activated by incubation with phorbol ester and ionomycin (PMA/I) or CD40L transfected fibroblasts in the presence of absence of CsA. The activation of CD4+ T cells and CD19+ CLL cells was assessed by staining for CD69/interferon gamma (IFNΥ) and CD69/CD25 respectively. Nuclear translocation of NFATc2 and NFKB p65 was measured by image flow cytometry (Amnis Imagestream). Leukaemia and Lymphoma Research provided the funding for this study. NFkB(p65) translocation at 30 minutes was inhibited by a mean of 22.5% (p=0.0003) in activated CLL CD4+ T cells treated with CsA compared to those treated with vehicle control (VC). Similarly, in the presence of CsA, NFAT-c2 translocation was inhibited by a mean of 24.3% (p=0.008) at 10 minutes in CLL CD4+ T cells compared to those treated with VC. NFkB(p65) translocation was not inhibited (mean of differences=0.63%, p=0.645) and NFAT-c2 translocation was minimally inhibited (mean of differences = -4%, p = 0.007) in activated CLL B Cells treated with CsA. The proportion of activated CLL CD4+ T cells expressing both CD69 and IFNΥ was reduced by 13.2% (p=0.003) in the presence of CsA whereas there was no inhibition of CD25(-1.5, p=0.16) and CD69(-1.4, p=0.5) expression in activated CLL B cells treated with CsA. In summary, CsA had a profound effect on CD4+ T cell activation in patients with CLL, as demonstrated by the reduction in NFkB (p65), NFAT-c2 nuclear translocation and CD69/IFNΥ expressing cells. In contrast, there was a minimal effect on NFAT-c2 translocation in activated CLL B cells and no impact on NFkB (p65) translocation or the expression of CD25 and CD69. These findings suggest that the previously documented activity of CsA in CLL is not due to a direct effect on the tumour but is instead indirect and mediated through inhibition of other microenvironment derived signals such as those provided by activated CD4+ T cells. Since it is likely that these co-stimulatory effects act in concert other signals, such as those induced by BCR activation, reexamination of CsA and similar agents in CLL would thus seem warranted. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ting Li ◽  
Fenggen Yan ◽  
Rui Wang ◽  
Hua Zhou ◽  
Liang Liu

The key role of T cells has been elaborated in mediating immune responses and pathogenesis of human inflammatory and autoimmune conditions. In the current study the effect of shikonin, a compound isolated from a medicinal plant, on inhibition of T-cell activation was firstly examined by using primary human T lymphocytes isolated from buffy coat. Results showed that shikonin dose dependently suppressed T-cell proliferation, IL-2 and IFN-γsecretion, CD69 and CD25 expression, as well as cell cycle arrest activated by costimulation of PMA/ionomycin or OKT-3/CD28 monoclonal antibodies. Moreover, these inhibitory responses mediated by shikonin were found to be associated with suppression of the NF-κB signaling pathway via inhibition of the IKKα/βphosphorylation, IκB-αphosphorylation and degradation, and NF-κB nuclear translocation by directly decreasing IKKβactivity. Moreover, shikonin suppressed JNK phosphorylation in the MAPKs pathway of T cells. In this connection, we conclude that shikonin could suppress T lymphocyte activation through suppressing IKKβactivity and JNK signaling, which suggests that shikonin is valuable for further investigation as a potential immunosuppressive agent.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4590
Author(s):  
Hyun-Su Lee ◽  
Gil-Saeng Jeong

The objective of this study was to assess the inhibitory effect of the flavonoid aromadendrin on T cell activity to identify a non-cytotoxic immunosuppressive reagent. Conventional and qualitative PCR, MTT assays, flow cytometry and Western blotting were used to evaluate the effect of aromadendrin on the activity, cell viability and confluency, and proximal signal transduction of activated T cells. Aromadendrin effectively regulated IL-2 and IFNγ production in vitro from activated Jurkat T cells without cytotoxicity. Pre-treatment with aromadendrin also suppressed the expression levels of surface molecules CD69, CD25, and CD40L. Reduced calcium (Ca2+) influx in activated T cells pre-treated with aromadendrin was observed. Western blotting revealed that aromadendrin blocked the dephosphorylation of nuclear factor of activated T (NFAT) cells and its nuclear translocation. Involvement of the NFκB and MAPK pathways in the inhibitory effect of aromadendrin was also demonstrated. Results obtained demonstrated the suppressive effect of aromadendrin on T cell activation by Ca2+ influx regulation through NFAT activity suppression of the activated T cells.


1994 ◽  
Vol 14 (12) ◽  
pp. 7933-7942 ◽  
Author(s):  
R G Bryan ◽  
Y Li ◽  
J H Lai ◽  
M Van ◽  
N R Rice ◽  
...  

Optimal T-cell activation requires both an antigen-specific signal delivered through the T-cell receptor and a costimulatory signal which can be delivered through the CD28 molecule. CD28 costimulation induces the expression of multiple lymphokines, including interleukin 2 (IL-2). Because the c-Rel transcription factor bound to and activated the CD28 response element within the IL-2 promoter, we focused our study on the mechanism of CD28-mediated regulation of c-Rel in human peripheral blood T cells. We showed that CD28 costimulation accelerated the kinetics of nuclear translocation of c-Rel (and its phosphorylated form), p50 (NFKB1), and p65 (RelA). The enhanced nuclear translocation of c-Rel correlated with the stimulation of Il-2 production and T-cell proliferation by several distinct anti-CD28 monoclonal antibodies. This is explained at least in part by the long-term downregulation of I kappa B alpha following CD28 signalling as opposed to phorbol myristate acetate alone. Furthermore, we showed that the c-Rel-containing CD28-responsive complex is enhanced by, but not specific to, CD28 costimulation. Our results indicate that c-Rel is one of the transcription factors targeted by CD28 signalling.


2013 ◽  
Vol 148 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Antoine Roux ◽  
Gisèle Mourin ◽  
Solène Fastenackels ◽  
Jorge R. Almeida ◽  
Maria Candela Iglesias ◽  
...  

1994 ◽  
Vol 91 (10) ◽  
pp. 4494-4498 ◽  
Author(s):  
Y. Samstag ◽  
C. Eckerskorn ◽  
S. Wesselborg ◽  
S. Henning ◽  
R. Wallich ◽  
...  

2020 ◽  
Vol 117 (14) ◽  
pp. 7961-7970 ◽  
Author(s):  
Sandeep Kumar ◽  
Sunil Kumar Singh ◽  
Navin Viswakarma ◽  
Gautam Sondarva ◽  
Rakesh Sathish Nair ◽  
...  

Mixed lineage kinase 3 (MLK3), also known as MAP3K11, was initially identified in a megakaryocytic cell line and is an emerging therapeutic target in cancer, yet its role in immune cells is not known. Here, we report that loss or pharmacological inhibition of MLK3 promotes activation and cytotoxicity of T cells. MLK3 is abundantly expressed in T cells, and its loss alters serum chemokines, cytokines, and CD28 protein expression on T cells and its subsets. MLK3 loss or pharmacological inhibition induces activation of T cells in in vitro, ex vivo, and in vivo conditions, irrespective of T cell activating agents. Conversely, overexpression of MLK3 decreases T cell activation. Mechanistically, loss or inhibition of MLK3 down-regulates expression of a prolyl-isomerase, Ppia, which is directly phosphorylated by MLK3 to increase its isomerase activity. Moreover, MLK3 also phosphorylates nuclear factor of activated T cells 1 (NFATc1) and regulates its nuclear translocation via interaction with Ppia, and this regulates T cell effector function. In an immune-competent mouse model of breast cancer, MLK3 inhibitor increases Granzyme B-positive CD8+T cells and decreases MLK3 and Ppia gene expression in tumor-infiltrating T cells. Likewise, the MLK3 inhibitor in pan T cells, isolated from breast cancer patients, also increases cytotoxic CD8+T cells. These results collectively demonstrate that MLK3 plays an important role in T cell biology, and targeting MLK3 could serve as a potential therapeutic intervention via increasing T cell cytotoxicity in cancer.


Sign in / Sign up

Export Citation Format

Share Document