Targeting The T Cell Component Of The Tumour Microenvironment In Chronic Lymphocytic Leukaemia; A Potential Therapeutic Strategy

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4147-4147
Author(s):  
Kirsty M Cuthill ◽  
Andrea Gail Sherman Buggins ◽  
Pj Chana ◽  
Stephen Devereux

Abstract It has recently become clear that B cell receptor (BCR) activation plays an important role in the pathogenesis of chronic lymphocytic leukaemia (CLL); a fact that is underlined by the marked efficacy of drugs that inhibit components of this pathway. Although the underlying mechanisms remain unclear, CLL BCRs have been shown to recognize a variety of autoantigens and there is evidence of ongoing activation of a number of downstream signaling molecules including Syk, Erk, Akt and the NFkB and NFAT family of transcription factors. In addition to BCR activation, it is thought that signals from other cells in the tumour microenvironment such as T cells, the vascular endothelium and other stromal cells may also play a role in promoting the growth of the disease. In the present study we chose to revisit the effects of ciclosporin (CsA), a calcineurin antagonist with effects on antigen receptor signaling, in CLL. When this agent is used to treat the autoimmune complications of CLL, concurrent responses in the underlying disease have been noted in about 20% of patients, although the underlying mechanism has not been thoroughly investigated. Since CsA primarily inhibits T cell activation we hypothesized that its effects in CLL might be due to a reduction in T cell mediated co-stimulation in the lymph nodes. We therefore investigated the effect of CsA on the activation of CLL B and T cells using conventional and multispectral imaging flow cytometry to measure the expression of activation markers and the nuclear translocation of NFAT and NFKB family transcription factors. Cells were collected from eight unselected patients with a confirmed diagnosis of CLL for each study. T and B cells were purified by negative immunomagnetic selection and activated by incubation with phorbol ester and ionomycin (PMA/I) or CD40L transfected fibroblasts in the presence of absence of CsA. The activation of CD4+ T cells and CD19+ CLL cells was assessed by staining for CD69/interferon gamma (IFNΥ) and CD69/CD25 respectively. Nuclear translocation of NFATc2 and NFKB p65 was measured by image flow cytometry (Amnis Imagestream). Leukaemia and Lymphoma Research provided the funding for this study. NFkB(p65) translocation at 30 minutes was inhibited by a mean of 22.5% (p=0.0003) in activated CLL CD4+ T cells treated with CsA compared to those treated with vehicle control (VC). Similarly, in the presence of CsA, NFAT-c2 translocation was inhibited by a mean of 24.3% (p=0.008) at 10 minutes in CLL CD4+ T cells compared to those treated with VC. NFkB(p65) translocation was not inhibited (mean of differences=0.63%, p=0.645) and NFAT-c2 translocation was minimally inhibited (mean of differences = -4%, p = 0.007) in activated CLL B Cells treated with CsA. The proportion of activated CLL CD4+ T cells expressing both CD69 and IFNΥ was reduced by 13.2% (p=0.003) in the presence of CsA whereas there was no inhibition of CD25(-1.5, p=0.16) and CD69(-1.4, p=0.5) expression in activated CLL B cells treated with CsA. In summary, CsA had a profound effect on CD4+ T cell activation in patients with CLL, as demonstrated by the reduction in NFkB (p65), NFAT-c2 nuclear translocation and CD69/IFNΥ expressing cells. In contrast, there was a minimal effect on NFAT-c2 translocation in activated CLL B cells and no impact on NFkB (p65) translocation or the expression of CD25 and CD69. These findings suggest that the previously documented activity of CsA in CLL is not due to a direct effect on the tumour but is instead indirect and mediated through inhibition of other microenvironment derived signals such as those provided by activated CD4+ T cells. Since it is likely that these co-stimulatory effects act in concert other signals, such as those induced by BCR activation, reexamination of CsA and similar agents in CLL would thus seem warranted. Disclosures: No relevant conflicts of interest to declare.

1994 ◽  
Vol 179 (5) ◽  
pp. 1539-1549 ◽  
Author(s):  
W Y Ho ◽  
M P Cooke ◽  
C C Goodnow ◽  
M M Davis

Successful antibody production in vivo depends on a number of cellular events, one of the most important of these being cognate B cell-T cell interaction. To examine this phenomenon in vitro, homogeneous populations of hen egg lysozyme (HEL)-specific small resting B cells and naive CD4+ HEL-specific T cells (derived from immunoglobulin [Ig] and T cell receptor transgenic mice, respectively) were cultured together. On addition of intact HEL protein. HEL-specific B cells increase their expression of activation molecules, including a B7-related protein and CD44, and enlarge into blast cells. Within the same cultures, HEL-specific CD4+ T cells also increase expression of the activation markers CD69 and CD44, enlarge, secrete lymphokines, and proliferate. This response is radiation sensitive, supporting the conclusion that HEL-specific B cells present antigen to and activate the naive T cells. By contrast, when a synthetic peptide fragment of HEL is used to bypass B cell antigen-receptor engagement, the naive T cells enlarge and display activation antigens, but fail to produce lymphokines, proliferate, or promote B cell blastogenesis. Presentation of HEL by tolerant B cells, which are no longer able to signal effectively through their antigen receptors, results in an identical pattern of incomplete T cell activation. Addition of a stimulating anti-CD28 antibody and blocking of CD28 signals with CTLA4/Ig fusion protein both show that complete activation of naive CD4+ T cells depends on the initial induction of B7 and related costimulatory molecules after HEL binding to nontolerant HEL-specific B cells. Thus, in the absence of adequate constimulation from the B cell, naive CD4+ T cells undergo a form of "partial activation" in which they upregulate surface expression of certain T cell activation antigens, but fail to efficiently produce lymphokine and proliferate. This may explain the different conclusions that have been reached regarding the consequences of B cell antigen presentation to T cells, in that the ability of B cells to activate naive CD4+ T cells depends both on their specificity and their activation state.


2021 ◽  
Author(s):  
Jamie L McCall ◽  
Melinda E Varney ◽  
Sebastian A. Dziadowicz ◽  
Casey Hall ◽  
Kathryn E Blethen ◽  
...  

Objective: Prenatal cadmium (Cd) exposure leads to immunotoxic phenotypes in the offspring affecting coding and non-coding genes. Recent studies have shown that long non-coding RNAs (lncRNAs) are integral to T cell regulation. Here, we investigated the role of long non-coding RNA small nucleolar RNA hostgene 7 (lncSnhg7) in T cell proliferation. Methods: RNA sequencing was used to analyze the expression of lncRNAs in splenic CD4+ T cells with and without CD3/CD28 stimulation. Next, T cells isolated from offspring exposed to control or Cd water throughout mating and gestation were analyzed with and without stimulation with anti-CD3/CD28 beads. Quantitative qPCR and western blotting were used to detect RNA and protein levels of specific genes. Overexpression of a miR-34a mimic was achieved using nucleofection. Apoptosis was measured using flow cytometry and luminescence assays. Flow cytometry was also used to measure T cell proliferation in culture. Results: We identified 23 lncRNAs that were differentially expressed in stimulated versus unstimulated T cells, including lncSnhg7. LncSnhg7 and a downstream protein, GALNT7, are upregulated in T cells from offspring exposed to Cd during gestation. Overexpression of miR-34a, a regulator of lncSnhg7 and GALNT7, suppresses GALNT7 protein levels in primary T cells, but not in a mouse T lymphocyte cell line. The T cells isolated from Cd-exposed offspring exhibit increased proliferation after activation in vitro, but Treg suppression and CD4+ T cell apoptosis are not affected by prenatal Cd exposure. Conclusion: Prenatal Cd exposure alters the expression of lncRNAs during T cell activation. The induction of lncSnhg7 is enhanced in splenic T cells from Cd offspring resulting in the upregulation of GALNT7 protein and increased proliferation following activation. miR-34a overexpression decreased GALNT7 expression suggesting that the lncSnhg7/miR-34a/GALNT7 is an important pathway in primary CD4+ T cells. These data highlight the need to understand the consequences of environmental exposures on lncRNA functions in non-cancerous cells as well as the effects in utero.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rhianna Jones ◽  
Kyle Kroll ◽  
Courtney Broedlow ◽  
Luca Schifanella ◽  
Scott Smith ◽  
...  

AbstractHIV/SIV infections lead to massive loss of mucosal CD4 + T cells and breakdown of the epithelial mucosa resulting in severe microbial dysbiosis and chronic immune activation that ultimately drive disease progression. Moreover, disruption of one of the most understudied mucosal environments, the oral cavity, during HIV-induced immunosuppression results in significant microbial and neoplastic co-morbidities and contributes to and predicts distal disease complications. In this study we evaluated the effects of oral probiotic supplementation (PBX), which can stimulate and augment inflammatory or anti-inflammatory pathways, on early SIV infection of rhesus macaques. Our study revealed that similar to the GI mucosae, oral CD4 + T cells were rapidly depleted, and as one of the first comprehensive analyses of the oral microflora in SIV infection, we also observed significant modulation among two genera, Porphyromonas and Actinobacillus, early after infection. Interestingly, although PBX therapy did not substantially protect against oral dysbiosis or ameliorate cell loss, it did somewhat dampen inflammation and T cell activation. Collectively, these data provide one of the most comprehensive evaluations of SIV-induced changes in oral microbiome and CD4 + T cell populations, and also suggest that oral PBX may have some anti-inflammatory properties in lentivirus infections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Kathrin Gollmer ◽  
François Asperti-Boursin ◽  
Yoshihiko Tanaka ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  

Abstract CD4+ T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)–transgenic (tg) CD4+ T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3KδD910A/D910A or PI3Kγ-deficient TCR-tg CD4+ T cells showed similar responsiveness to CCL21 costimulation as control CD4+ T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4+ T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca2+ signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.


Author(s):  
Njabulo Ngwenyama ◽  
Annet Kirabo ◽  
Mark Aronovitz ◽  
Francisco Velázquez ◽  
Francisco Carrillo-Salinas ◽  
...  

Background: Despite the well-established association between T cell-mediated inflammation and non-ischemic heart failure (HF), the specific mechanisms triggering T cell activation during the progression of HF and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T cell receptor (TCR) activation and promote HF. Methods: We used transverse aortic constriction (TAC) in mice to trigger myocardial oxidative stress and T cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77 GFP reporter mice, which transiently express GFP upon TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII -/- mice, and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG-protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species (ROS) and IsoLGs in eliciting T cell immune responses in vivo by treating mice with the antioxidant TEMPOL, and the IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) during TAC, and ex-vivo in mechanistic studies of CD4+ T cell proliferation in response to IsoLG-modified cardiac proteins. Results: We discovered that TCR antigen recognition increases in the left ventricle (LV) as cardiac dysfunction progresses, and identified a limited repertoire of activated CD4+ T cell clonotypes in the LV. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction since MhcII -/- mice reconstituted with CD4+ T cells, and OTII mice immunized with their cognate antigen were protected from TAC-induced cardiac dysfunction despite the presence of LV-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-HOBA reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in ROS dependent dendritic cell accumulation of IsoLG-protein adducts which induced robust CD4+ T cell proliferation. Conclusions: Collectively, our study demonstrates an important role of ROS-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T cell activation within the heart.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A929-A930
Author(s):  
Victoria Smith ◽  
Sterling Eckard ◽  
Bianca Rojo ◽  
Patrick Chun

BackgroundMDSC produce numerous immune-suppressive factors and are associated with poor outcomes across different cancers. They are frequently elevated in patients experiencing inadequate benefit from checkpoint blockade and there is a crucial need for therapies for this patient population. MDSC are recruited from bone marrow in response to both tumor signaling and T cell activation, and their accumulation in tumors and lymphatics can limit the potential benefits of immunostimulatory therapies. AMV564 is a bivalent T cell engager that selectively depletes MDSC. In a phase 1 study, pharmacodynamic analyses revealed significant depletion of MDSC, T cell activation, expansion of the T cell repertoire and an IFN-gamma-dominant cytokine profile with comparatively limited IL6 induction.1 Monotherapy activity including a confirmed RECIST complete response was observed. The clinical and pharmacodynamic profiles of AMV564 are being further evaluated in specific patient cohorts, including patients progressing on checkpoint blockade.MethodsIn a phase 1b expansion study (NCT04128423), patient cohorts with cancers more likely to include actionable tumor antigens were selected for treatment with AMV564, with most patients representing checkpoint treatment failures. An additional cohort of patients included heterogeneous tumor types stratified by tumor mutation burden (TMB) score from circulating tumor DNA. Pharmacodynamic analyses including direct immunophenotyping (flow cytometry) of T and myeloid cell compartments in peripheral blood were performed on patients treated with AMV564 (15 µg daily for 10 of 21 days by subcutaneous injection).ResultsChanges in myeloid and T cell profiles consistent with the pharmacodynamic signature of AMV564 were observed in patients receiving AMV564 despite one or more prior lines of checkpoint blockade therapy. Notably, both high baseline MDSC and elevated induction of MDSC after T cell activation were apparent (figure 1). Control of MDSC by AMV564 was associated with increases in both effector CD8 and CD4 T cells (figure 2). Extremely elevated levels of regulatory T cells were often observed: after treatment with AMV564, a Th-1-like repolarization of these cells was apparent, often associated with reduction in CD25 (figure 3).Abstract 887 Figure 1Significantly higher induction of M-MDSC is apparent in patients previously receiving checkpoint blockade (CPB) after T cell activation by AMV564.Abstract 887 Figure 2Treatment with AMV564 promotes increases in effector CD8 and CD4 T cells in patients previously treated with CPB (examples shown are Merkel cell carcinoma (MCC) and head and neck squamous cell carcinoma (HNSCC)).Abstract 887 Figure 3Th-1 like repolarization of Treg is apparent in patients previously treated with CPB (MCC, HNSCC examples) after treatment with AMV564 (a). Example CD25 low and T-Bet high cells in HNSCC patient (arrow, b).ConclusionsTreatment with AMV564 yielded substantial reductions in MDSC and favorable polarization of CD8 and CD4 T cells, including Th1-like polarization of Treg. This signature was apparent in patients previously treated with checkpoint inhibitors, despite strong induction of MDSC in response to T cell activation, and high baseline levels (>20%) of Treg.Trial RegistrationNCT04128423ReferencesSmith V, Eckard S, Rettig MP, et al. AMV564, a bivalent, bispecific T-cell engager, depletes myeloid derived suppressor cells and activates T cells in cancer patients. Cancer Res 2020;80(16 Supplement):5699.Ethics ApprovalThis study was approved by the Institutional Review Board (IRB) or Independent Ethics Committee (IEC) at each participating institution (including Ohio State University, MD Anderson Cancer Center, Duke University, University of California Los Angeles, Advent Health, Christ Hospital). All participants gave informed consent for samples used to generate pharmacodynamic data. No sensitive of identifiable information is included.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


1994 ◽  
Vol 14 (12) ◽  
pp. 7933-7942
Author(s):  
R G Bryan ◽  
Y Li ◽  
J H Lai ◽  
M Van ◽  
N R Rice ◽  
...  

Optimal T-cell activation requires both an antigen-specific signal delivered through the T-cell receptor and a costimulatory signal which can be delivered through the CD28 molecule. CD28 costimulation induces the expression of multiple lymphokines, including interleukin 2 (IL-2). Because the c-Rel transcription factor bound to and activated the CD28 response element within the IL-2 promoter, we focused our study on the mechanism of CD28-mediated regulation of c-Rel in human peripheral blood T cells. We showed that CD28 costimulation accelerated the kinetics of nuclear translocation of c-Rel (and its phosphorylated form), p50 (NFKB1), and p65 (RelA). The enhanced nuclear translocation of c-Rel correlated with the stimulation of Il-2 production and T-cell proliferation by several distinct anti-CD28 monoclonal antibodies. This is explained at least in part by the long-term downregulation of I kappa B alpha following CD28 signalling as opposed to phorbol myristate acetate alone. Furthermore, we showed that the c-Rel-containing CD28-responsive complex is enhanced by, but not specific to, CD28 costimulation. Our results indicate that c-Rel is one of the transcription factors targeted by CD28 signalling.


Sign in / Sign up

Export Citation Format

Share Document