scholarly journals Orangutans use compliant branches to lower the energetic cost of locomotion

2007 ◽  
Vol 3 (3) ◽  
pp. 253-256 ◽  
Author(s):  
S.K.S Thorpe ◽  
R.H Crompton ◽  
R.McN Alexander

Within the forest canopy, the shortest gaps between tree crowns lie between slender terminal branches. While the compliance of these supports has previously been shown to increase the energetic cost of gap crossing in arboreal animals (e.g. Alexander 1991 Z. Morphol. Anthropol. 78 , 315–320; Demes et al . 1995 Am. J. Phys. Anthropol. 96 , 419–429), field observations suggest that some primates may be able to use support compliance to increase the energetic efficiency of locomotion. Here, we calculate the energetic cost of alternative methods of gap crossing in orangutans ( Pongo abelii ). Tree sway (in which orangutans oscillate a compliant tree trunk with increasing magnitude to bridge a gap) was found to be less than half as costly as jumping, and an order of magnitude less costly than descending the tree, walking to the vine and climbing it. Observations of wild orangutans suggest that they actually use support compliance in many aspects of their locomotor behaviour. This study seems to be the first to show that elastic compliance in arboreal supports can be used to reduce the energetic cost of gap crossing.

2011 ◽  
Vol 279 (1729) ◽  
pp. 640-644 ◽  
Author(s):  
Graham N. Askew ◽  
Federico Formenti ◽  
Alberto E. Minetti

In Medieval Europe, soldiers wore steel plate armour for protection during warfare. Armour design reflected a trade-off between protection and mobility it offered the wearer. By the fifteenth century, a typical suit of field armour weighed between 30 and 50 kg and was distributed over the entire body. How much wearing armour affected Medieval soldiers' locomotor energetics and biomechanics is unknown. We investigated the mechanics and the energetic cost of locomotion in armour, and determined the effects on physical performance. We found that the net cost of locomotion ( C met ) during armoured walking and running is much more energetically expensive than unloaded locomotion. C met for locomotion in armour was 2.1–2.3 times higher for walking, and 1.9 times higher for running when compared with C met for unloaded locomotion at the same speed. An important component of the increased energy use results from the extra force that must be generated to support the additional mass. However, the energetic cost of locomotion in armour was also much higher than equivalent trunk loading. This additional cost is mostly explained by the increased energy required to swing the limbs and impaired breathing. Our findings can predict age-associated decline in Medieval soldiers' physical performance, and have potential implications in understanding the outcomes of past European military battles.


2021 ◽  
Vol 13 (5) ◽  
pp. 948
Author(s):  
Lei Cui ◽  
Ziti Jiao ◽  
Kaiguang Zhao ◽  
Mei Sun ◽  
Yadong Dong ◽  
...  

Clumping index (CI) is a canopy structural variable important for modeling the terrestrial biosphere, but its retrieval from remote sensing data remains one of the least reliable. The majority of regional or global CI products available so far were generated from multiangle optical reflectance data. However, these reflectance-based estimates have well-known limitations, such as the mere use of a linear relationship between the normalized difference hotspot and darkspot (NDHD) and CI, uncertainties in bidirectional reflectance distribution function (BRDF) models used to calculate the NDHD, and coarse spatial resolutions (e.g., hundreds of meters to several kilometers). To remedy these limitations and develop alternative methods for large-scale CI mapping, here we explored the use of spaceborne lidar—the Geoscience Laser Altimeter System (GLAS)—and proposed a semi-physical algorithm to estimate CI at the footprint level. Our algorithm was formulated to leverage the full vertical canopy profile information of the GLAS full-waveform data; it converted raw waveforms to forest canopy gap distributions and gap fractions of random canopies, which was used to estimate CI based on the radiative transfer theory and a revised Beer–Lambert model. We tested our algorithm over two areas in China—the Saihanba National Forest Park and Heilongjiang Province—and assessed its relative accuracies against field-measured CI and MODIS CI products. We found that reliable estimation of CI was possible only for GLAS waveforms with high signal-to-noise ratios (e.g., >65) and at gentle slopes (e.g., <12°). Our GLAS-based CI estimates for high-quality waveforms compared well to field-based CI (i.e., R2 = 0.72, RMSE = 0.07, and bias = 0.02), but they showed less correlation to MODIS CI (e.g., R2 = 0.26, RMSE = 0.12, and bias = 0.04). The difference highlights the impact of the scale effect in conducting comparisons of products with huge differences resolution. Overall, our analyses represent the first attempt to use spaceborne lidar to retrieve high-resolution forest CI and our algorithm holds promise for mapping CI globally.


1988 ◽  
Vol 138 (1) ◽  
pp. 301-318 ◽  
Author(s):  
N. C. Heglund ◽  
C. R. Taylor

In this study we investigate how speed and stride frequency change with body size. We use this information to define ‘equivalent speeds’ for animals of different size and to explore the factors underlying the six-fold difference in mass-specific energy cost of locomotion between mouse- and horse-sized animals at these speeds. Speeds and stride frequencies within a trot and a gallop were measured on a treadmill in 16 species of wild and domestic quadrupeds, ranging in body size from 30 g mice to 200 kg horses. We found that the minimum, preferred and maximum sustained speeds within a trot and a gallop all change in the same rather dramatic manner with body size, differing by nine-fold between mice and horses (i.e. all three speeds scale with about the 0.2 power of body mass). Although the absolute speeds differ greatly, the maximum sustainable speed was about 2.6-fold greater than the minimum within a trot, and 2.1-fold greater within a gallop. The frequencies used to sustain the equivalent speeds (with the exception of the minimum trotting speed) scale with about the same factor, the −0.15 power of body mass. Combining this speed and frequency data with previously published data on the energetic cost of locomotion, we find that the mass-specific energetic cost of locomotion is almost directly proportional to the stride frequency used to sustain a constant speed at all the equivalent speeds within a trot and a gallop, except for the minimum trotting speed (where it changes by a factor of two over the size range of animals studied). Thus the energy cost per kilogram per stride at five of the six equivalent speeds is about the same for all animals, independent of body size, but increases with speed: 5.0 J kg-1 stride-1 at the preferred trotting speed; 5.3 J kg-1 stride-1 at the trot-gallop transition speed; 7.5 J kg-1 stride-1 at the preferred galloping speed; and 9.4 J kg-1 stride-1 at the maximum sustained galloping speed. The cost of locomotion is determined primarily by the cost of activating muscles and of generating a unit of force for a unit of time. Our data show that both these costs increase directly with the stride frequency used at equivalent speeds by different-sized animals. The increase in cost per stride with muscles (necessitating higher muscle forces for the same ground reaction force) as stride length increases both in the trot and in the gallop.


1995 ◽  
Vol 198 (3) ◽  
pp. 629-632 ◽  
Author(s):  
V A Langman ◽  
T J Roberts ◽  
J Black ◽  
G M Maloiy ◽  
N C Heglund ◽  
...  

Large animals have a much better fuel economy than small ones, both when they rest and when they run. At rest, each gram of tissue of the largest land animal, the African elephant, consumes metabolic energy at 1/20 the rate of a mouse; using existing allometric relationships, we calculate that it should be able to carry 1 g of its tissue (or a load) for 1 km at 1/40 the cost for a mouse. These relationships between energetics and size are so consistent that they have been characterized as biological laws. The elephant has massive legs and lumbers along awkwardly, suggesting that it might expend more energy to move about than other animals. We find, however, that its energetic cost of locomotion is predicted remarkably well by the allometric relationships and is the lowest recorded for any living land animal.


2021 ◽  
Author(s):  
Robert Godin ◽  
James R. Durrant

The energy cost of lifetime gain in solar energy conversion systems is determined from a breadth of technologies. The cost of 87 meV per order of magnitude lifetime improvement is strikingly close to the 59 meV determined from a simple kinetic model.


1996 ◽  
Vol 199 (3) ◽  
pp. 587-592 ◽  
Author(s):  
C Farley ◽  
M Emshwiller

Nocturnal geckos can walk on level ground more economically than diurnal lizards. One hypothesis for why nocturnal geckos have a low cost of locomotion is that they can perform mechanical work during locomotion more efficiently than other lizards. To test this hypothesis, we compared the efficiency of the nocturnal gecko Coleonyx variegatus (average body mass 4.2 g) and the diurnal skink Eumeces skiltonianus (average body mass 4.8 g) when they performed vertical work during uphill locomotion. We measured the rate of oxygen consumption when each species walked on the level and up a 50 slope over a range of speeds. For Coleonyx variegatus, the energetic cost of traveling a unit distance (the minimum cost of transport, Cmin) increased from 1.5 to 2.7 ml O2 kg-1 m-1 between level and uphill locomotion. For Eumeces skiltonianus, Cmin increased from 2.5 to 4.7 ml O2 kg-1 m-1 between level and uphill locomotion. By taking the difference between Cmin for level and uphill locomotion, we found that the efficiency of performing vertical work during locomotion was 37 % for Coleonyx variegatus and 19 % for Eumeces skiltonianus. The similarity between the 1.9-fold difference in vertical efficiency and the 1.7-fold difference in the cost of transport on level ground is consistent with the hypothesis that nocturnal geckos have a lower cost of locomotion than other lizards because they can perform mechanical work during locomotion more efficiently.


1992 ◽  
Vol 262 (5) ◽  
pp. R771-R778 ◽  
Author(s):  
R. V. Baudinette ◽  
G. K. Snyder ◽  
P. B. Frappell

Rates of oxygen consumption and blood lactate levels were measured in tammar wallabies (Macropus eugenii) trained to hop on a treadmill. In addition, the work required to overcome wind resistance during forward locomotion was measured in a wind tunnel. Up to approximately 2.0 m/s, rates of oxygen consumption increased linearly with speed and were not significantly different from rates of oxygen consumption for a quadruped of similar body mass. Between 2.0 and 9.4 m/s, rates of oxygen consumption were independent of hopping speed, and between 3.9 and 7.9 m/s, the range over which samples were obtained, blood lactate levels were low (0.83 +/- 0.13 mmol.min-1.kg-1) and did not increase with hopping speed. The work necessary to overcome drag increased exponentially with speed but increased the energy cost of locomotion by only 10% at the average speed attained by our fast hoppers. Thus, during hopping, the energy cost of locomotion is effectively independent of speed. At rates of travel observed in the field, the estimated energy cost of transport in large macropods is less than one-third the cost for a quadruped of equivalent body mass. The energetic savings associated with this unique form of locomotion may have been an important physiological adaptation, enabling large macropods to efficiently cover the distances necessary to forage in the semiarid landscapes of Australia.


1993 ◽  
Vol 174 (1) ◽  
pp. 81-95
Author(s):  
R V Baudinette ◽  
E A Halpern ◽  
D S Hinds

In the marsupial, the potoroo, multiple regression analysis shows that ambient temperature makes a minor (2%) contribution towards variation in oxygen consumption with speed. This suggests that the heat generated during running is substituted for heat which would otherwise have to be generated for temperature regulation. Maximum levels of oxygen consumption are also temperature-independent over the range 5-25 degrees C, but plasma lactate concentrations at the conclusion of exercise significantly increase with ambient temperature. Adult potoroos show a linear increase in oxygen consumption with speed, and multiple regression indicates that the most significant factor affecting energy use during running is stride length. Juvenile potoroos have an incremental cost of locomotion about 40% lower than that predicted on the basis of body mass. The smaller animals meet the demands of increasing speed by increasing stride length rather than stride frequency, as would be expected in a smaller species. Our results show that juvenile potoroos diverge significantly from models based only on adult animals in incremental changes in stride frequency, length and the cost of transport, suggesting that they are not simply scaled-down adults.


Sign in / Sign up

Export Citation Format

Share Document