scholarly journals Congruent responses to weather variability in high arctic herbivores

2012 ◽  
Vol 8 (6) ◽  
pp. 1002-1005 ◽  
Author(s):  
Audun Stien ◽  
Rolf A. Ims ◽  
Steve D. Albon ◽  
Eva Fuglei ◽  
R. Justin Irvine ◽  
...  

Assessing the role of weather in the dynamics of wildlife populations is a pressing task in the face of rapid environmental change. Rodents and ruminants are abundant herbivore species in most Arctic ecosystems, many of which are experiencing particularly rapid climate change. Their different life-history characteristics, with the exception of their trophic position, suggest that they should show different responses to environmental variation. Here we show that the only mammalian herbivores on the Arctic islands of Svalbard, reindeer ( Rangifer tarandus ) and sibling voles ( Microtus levis ), exhibit strong synchrony in population parameters. This synchrony is due to rain-on-snow events that cause ground ice and demonstrates that climate impacts can be similarly integrated and expressed in species with highly contrasting life histories. The finding suggests that responses of wildlife populations to climate variability and change might be more consistent in Polar regions than elsewhere owing to the strength of the climate impact and the simplicity of the ecosystem.

2018 ◽  
Vol 26 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Conor D. Mallory ◽  
Mark S. Boyce

The ability of many species to adapt to the shifting environmental conditions associated with climate change will be a key determinant of their persistence in the coming decades. This is a challenge already faced by species in the Arctic, where rapid environmental change is well underway. Caribou and reindeer (Rangifer tarandus) play a key role in Arctic ecosystems and provide irreplaceable socioeconomic value to many northern peoples. Recent decades have seen declines in many Rangifer populations, and there is strong concern that climate change is threatening the viability of this iconic Arctic species. We examine the literature to provide a thorough and full consideration of the many environmental factors that limit caribou and reindeer populations, and how these might be affected by a warming climate. Our review suggests that the response of Rangifer populations to climate change is, and will continue to be, varied in large part to their broad circumpolar distribution. While caribou and reindeer could have some resilience to climate change, current global trends in abundance undermine all but the most precautionary outlooks. Ultimately, the conservation of Rangifer populations will require careful management that considers the local and regional manifestations of climate change.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pratap Kafle ◽  
Peter Peller ◽  
Alessandro Massolo ◽  
Eric Hoberg ◽  
Lisa-Marie Leclerc ◽  
...  

Abstract Rapid climate warming in the Arctic results in multifaceted disruption of biodiversity, faunal structure, and ecosystem health. Hypotheses have linked range expansion and emergence of parasites and diseases to accelerating warming globally but empirical studies demonstrating causality are rare. Using historical data and recent surveys as baselines, we explored climatological drivers for Arctic warming as determinants of range expansion for two temperature-dependent lungworms, Umingmakstrongylus pallikuukensis and Varestrongylus eleguneniensis, of muskoxen (Ovibos moschatus) and caribou (Rangifer tarandus), in the Canadian Arctic Archipelago from 1980 through 2017. Our field data shows a substantial northward shift of the northern edge of the range for both parasites and increased abundance across the expanded ranges during the last decade. Mechanistic models parameterized with parasites’ thermal requirements demonstrated that geographical colonization tracked spatial expansion of permissive environments, with a temporal lag. Subtle differences in life histories, thermal requirements of closely related parasites, climate oscillations and shifting thermal balances across environments influence faunal assembly and biodiversity. Our findings support that persistence of host-parasite assemblages reflects capacities of parasites to utilize host and environmental resources in an ecological arena of fluctuating opportunity (alternating trends in exploration and exploitation) driving shifting boundaries for distribution across spatial and temporal scales.


2017 ◽  
Vol 149 (3) ◽  
pp. 357-371 ◽  
Author(s):  
Elyssa R. Cameron ◽  
Christopher M. Buddle

AbstractArctic ecosystems are characterised by a mosaic of distinct microhabitats, which play a key role in structuring biodiversity. Understanding species diversity in relation to these microhabitats, and how communities are structured seasonally, is imperative to properly conserve, monitor, and manage northern biodiversity. Spiders (Arachnida: Araneae) are dominant arthropod predators in the Arctic, yet the seasonal change in their communities in relation to microhabitat variation is relatively unknown. This research quantified how spider assemblages are structured seasonally and by microhabitat, near Cambridge Bay, Nunavut, Canada. In 2014, spiders were collected in 240 pan and pitfall traps placed in common microhabitat types (two wet and two dry) from 3 July to 11 August, the active season in the high Arctic. In total, 10 353 spiders from 22 species and four families were collected. Non-metric multidimensional scaling ordinations revealed that spider assemblages from wet habitats were distinct from those occurring in drier habitats, but that differences within each of those habitats were not evident. Abundance and diversity was highest in wet habitats and differed significantly from dry habitats; both these variables decreased seasonally. Spider assemblages in the north are structured strongly along moisture gradients, and such data informs planning for future ecological monitoring in the Arctic.


2011 ◽  
Vol 279 (1733) ◽  
pp. 1515-1521 ◽  
Author(s):  
Guy J. Harrington ◽  
Jaelyn Eberle ◽  
Ben A. Le-Page ◽  
Mary Dawson ◽  
J. Howard Hutchison

For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants.


Polar Biology ◽  
2021 ◽  
Vol 44 (4) ◽  
pp. 739-750
Author(s):  
Lech Stempniewicz ◽  
Michał Goc ◽  
Marta Głuchowska ◽  
Dorota Kidawa ◽  
Jan Marcin Węsławski

AbstractTo monitor the rapid changes occurring in Arctic ecosystems and predict their direction, basic information about the current number and structure of the main components of these systems is necessary. Using boat-based surveys, we studied the numbers and distribution of seabirds foraging in Hornsund (SW Spitsbergen) during three summer seasons. The average number of seabirds foraging concurrently in the whole fjord was estimated at 28,000. Little Auks Alle alle were the most numerous, followed by Northern Fulmars Fulmarus glacialis, Brünnich’s Guillemots Uria lomvia and Black-legged Kittiwakes Rissa tridactyla. The pelagic zone was exploited by some 75% of the birds. Their density was the highest (> 400 ind. km−2) in the tidewater glacier bays, where kittiwakes were predominant, and the lowest in the coastal glacier bays. The seabirds in Hornsund daily consumed c. 12.7 tons of food, i.e. c. 0.2% of the summer mesozooplankton and fish standing stocks available in the fjord. This food consisted primarily of copepods, amphipods and molluscs (c. 70%), whereas fish made up < 15%. More than 50% of this biomass was ingested by pursuit divers, while surface feeders took c. 29% and benthophages c. 13%. About three-quarters of the food biomass was taken from the pelagic zone. This paper describes, for the first time in quantitative terms, the structure and function of a seabird community foraging in an Arctic fjord. It also provides a baseline for future studies on climate-induced changes in the importance of seabirds in the Arctic food web.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Antti Piironen ◽  
Antti Paasivaara ◽  
Toni Laaksonen

Abstract Background Knowledge on migration patterns and flyways is a key for understanding the dynamics of migratory populations and evolution of migratory behaviour. Bird migration is usually considered to be movements between breeding and wintering areas, while less attention has been paid to other long-distance movements such as moult migration. Methods We use high-resolution satellite-tracking data from 58 taiga bean geese Anser fabalis fabalis from the years 2019–2020, to study their moult migration during breeding season. We show the moulting sites, estimate the migratory connectivity between the breeding and the moulting sites, and estimate the utilization distributions during moult. We reveal migration routes and compare the length and timing of migration between moult migrants and successful breeders. Results All satellite-tracked non-breeding and unsuccessfully breeding taiga bean geese migrated annually to the island of Novaya Zemlya in the high Arctic for wing moult, meaning that a large part of the population gathers at the moulting sites outside the breeding range annually for approximately three months. Migratory connectivity between breeding and moulting sites was very low (rm =  − 0.001, 95% CI − 0.1562–0.2897), indicating that individuals from different breeding grounds mix with each other on the moulting sites. Moult migrants began fall migration later in autumn than successful breeders, and their overall annual migration distance was over twofold compared to the successful breeders. Conclusions Regular moult migration makes the Arctic an equally relevant habitat for the taiga bean goose population as their boreal breeding and temperate wintering grounds, and links ecological communities in these biomes. Moult migration plays an important role in the movement patterns and spatio-temporal distribution of the population. Low migratory connectivity between breeding and moulting sites can potentially contribute to the gene flow within the population. Moult migration to the high Arctic exposes the population to the rapid impacts of global warming to Arctic ecosystems. Additionally, Novaya Zemlya holds radioactive contaminants from various sources, which might still pose a threat to moult migrants. Generally, these results show that moult migration may essentially contribute to the way we should consider bird migration and migratory flyways.


2020 ◽  
Author(s):  
Daniel Appenroth ◽  
Vebjørn J. Melum ◽  
Alexander C. West ◽  
Hugues Dardente ◽  
David G. Hazlerigg ◽  
...  

AbstractOrganisms use changes in photoperiod to anticipate and exploit favourable conditions in a seasonal environment. While species living at temperate latitudes receive day length information as a year-round input, species living in the Arctic may spend as much as two-thirds of the year without experiencing dawn or dusk. This suggests that specialised mechanisms may be required to maintain seasonal synchrony in polar regions.Svalbard ptarmigan (Lagopus muta hyperborea) are resident at 74-81° north latitude. They spend winter in constant darkness (DD) and summer in constant light (LL); extreme photoperiodic conditions under which they do not display overt circadian rhythms.Here we explored how arctic adaptation in circadian biology affects photoperiodic time measurement in captive Svalbard ptarmigan. For this purpose, DD-adapted birds, showing no circadian behaviour, either remained in prolonged DD, were transferred into a simulated natural photoperiod (SNP) or were transferred directly into LL. Birds transferred from DD to LL exhibited a strong photoperiodic response in terms of activation of the hypothalamic thyrotropin-mediated photoperiodic response pathway. This was assayed through expression of the Eya3, Tshβ and deiodinase genes, as well as gonadal development. While transfer to SNP established synchronous diurnal activity patterns, activity in birds transferred from DD to LL showed no evidence of circadian rhythmicity.These data show that the Svalbard ptarmigan does not require circadian entrainment to develop a photoperiodic response involving conserved molecular elements found in temperate species. Further studies are required to define how exactly arctic adaptation modifies seasonal timer mechanisms.Summary statementSvalbard ptarmigan show photoperiodic responses when transferred from constant darkness to constant light without circadian entrainment.


Author(s):  
Sarah Jackson

With 2014 being the warmest year on record and 10 of the warmest years occurring after 1997, it is essential to understand the effects of this warming on CO2 exchange. It was also discovered that much of this warming is focused in the Arctic regions, which are sensitive to changes in temperature (Cole & McCarthy, 2015). My research examines the effects of enhanced snowfall and soil temperature on the exchange of CO2 between the land and the atmosphere in a high arctic environment. The research is taking place at Cape Bounty Arctic Watershed Observatory (CBAWO) on Melville Island, Nunavut as part of the International Tundra Experiment (ITEX). The goal of ITEX is to better understand the effects of increased summer temperature and increased snowfall on arctic ecosystems. This is a full factorial experiment including treatments varying precipitation (and likely soil moisture), soil temperature, moisture and temperature together, and a control that is at ambient soil moisture and temperature. Snow fences are used to enhance precipitation, while open-topped transparent chambers are used to increase soil temperature. In a companion lab experiment, I look at the effects of different soil moisture levels and temperatures on soil CO2 production in a more controlled environment. Two temperatures, two moisture levels, and eight replicates of each will be established in sealed incubation chambers, and soils will be incubated for 33 days. Presently a significant relationship has been found between soil moisture and CO2 flux within the field experiment.


2011 ◽  
Vol 89 (5) ◽  
pp. 419-434 ◽  
Author(s):  
M. Festa-Bianchet ◽  
J.C. Ray ◽  
S. Boutin ◽  
S.D. Côté ◽  
A. Gunn

Caribou ( Rangifer tarandus (L., 1758)) play a central role in the ecology and culture of much of Canada, where they were once the most abundant cervid. Most populations are currently declining, and some face extirpation. In southern Canada, caribou range has retreated considerably over the past century. The ultimate reason for their decline is habitat alterations by industrial activities. The proximate causes are predation and, to a lesser extent, overharvest. The most southerly populations of “Mountain” caribou are at imminent risk of extirpation. Mountain caribou are threatened by similar industrial activities as Boreal caribou, and face increasing harassment from motorized winter recreational activities. Most populations of “Migratory Tundra” caribou are currently declining. Although these caribou fluctuate in abundance over decades, changing harvest technologies, climate change, increasing industrial development and human presence in the North raise doubts over whether recent declines will be followed by recoveries. The Peary caribou ( Rangifer tarandus pearyi J.A. Allen, 1902), a distinct subspecies endemic to Canada’s High Arctic, has suffered drastic declines caused by severe weather, hunting and predation. It faces an increasing threat from climate change. While some questions remain about the reasons for the decline of Migratory Tundra caribou, research has clearly identified several threats to the persistence of “Boreal”, Mountain, and Peary caribou. Scientific knowledge, however, has neither effectively influenced policies nor galvanized public opinion sufficiently to push governments into effective actions. The persistence of many caribou populations appears incompatible with the ongoing pace of industrial development.


2019 ◽  
Vol 19 (11) ◽  
pp. 7743-7757 ◽  
Author(s):  
Kaarle Juhana Kupiainen ◽  
Borgar Aamaas ◽  
Mikko Savolahti ◽  
Niko Karvosenoja ◽  
Ville-Veikko Paunu

Abstract. We present a case study where emission metric values from different studies are applied to estimate global and Arctic temperature impacts of emissions from a northern European country. This study assesses the climate impact of Finnish air pollutants and greenhouse gas emissions from 2000 to 2010, as well as future emissions until 2030. We consider both emission pulses and emission scenarios. The pollutants included are SO2, NOx, NH3, non-methane volatile organic compound (NMVOC), black carbon (BC), organic carbon (OC), CO, CO2, CH4 and N2O, and our study is the first one for Finland to include all of them in one coherent dataset. These pollutants have different atmospheric lifetimes and influence the climate differently; hence, we look at different climate metrics and time horizons. The study uses the global warming potential (GWP and GWP*), the global temperature change potential (GTP) and the regional temperature change potential (RTP) with different timescales for estimating the climate impacts by species and sectors globally and in the Arctic. We compare the climate impacts of emissions occurring in winter and summer. This assessment is an example of how the climate impact of emissions from small countries and sources can be estimated, as it is challenging to use climate models to study the climate effect of national policies in a multi-pollutant situation. Our methods are applicable to other countries and regions and present a practical tool to analyze the climate impacts in multiple dimensions, such as assessing different sectors and mitigation measures. While our study focuses on short-lived climate forcers, we found that the CO2 emissions have the most significant climate impact, and the significance increases over longer time horizons. In the short term, emissions of especially CH4 and BC played an important role as well. The warming impact of BC emissions is enhanced during winter. Many metric choices are available, but our findings hold for most choices.


Sign in / Sign up

Export Citation Format

Share Document