scholarly journals In ovo microbial communities: a potential mechanism for the initial acquisition of gut microbiota among oviparous birds and lizards

2018 ◽  
Vol 14 (7) ◽  
pp. 20180225 ◽  
Author(s):  
Brian K. Trevelline ◽  
Kirsty J. MacLeod ◽  
Sarah A. Knutie ◽  
Tracy Langkilde ◽  
Kevin D. Kohl

Vertebrate gut microbiota mediate critical physiological processes known to affect host fitness, but the mechanisms that expose wildlife to pioneer members of this important microbial community are not well understood. For example, oviparous vertebrates are thought to acquire gut microbiota through post-natal exposure to the external environment, but recent evidence from placental mammals suggests that the vertebrate reproductive tract harbours microbiota that may inoculate offspring in utero . These findings suggest that oviparous vertebrates may be capable of acquiring pioneer microbiota in ovo , but this phenomenon remains unexplored. To fill this knowledge gap, we used culture-independent inventories to determine if the eggs of wild birds and lizards harboured in ovo microbial communities. Our approach revealed distinct in ovo bacterial communities, but fungal communities were indistinguishable from controls. Further, lizard eggs from the same clutch had bacterial community structures that were more similar to each other than to unrelated individuals. These results suggest that oviparous vertebrates may acquire maternal microbiota in ovo , possibly through the inoculation of egg yolk prior to shelling. Therefore, this study may provide a first glimpse of a phenomenon with substantial implications for our understanding of the ecological and evolutionary factors shaping gut microbial communities.

Author(s):  
Ze Ren ◽  
Hongkai Gao

Bacterial and fungal communities in biofilms are important components in driving biogeochemical processes in stream ecosystems. Previous studies have well documented the patterns of bacterial alpha diversity in stream biofilms in glacier-fed streams, where, however, beta diversity of the microbial communities has received much less attention especially considering both bacterial and fungal communities. A focus on beta diversity can provide insights into the mechanisms driving community changes associated to large environmental fluctuations and disturbances, such as in glacier-fed streams. Moreover, modularity of co-occurrence networks can reveal more ecological and evolutionary properties of microbial communities beyond taxonomic groups. Here, integrating beta diversity and co-occurrence approach, we explored the network topology and modularity of the bacterial and fungal communities with consideration of environmental variation in glacier-fed streams in Central Asia. Combining results from hydrological modeling and normalized difference of vegetation index, this study highlighted that hydrological variables and vegetation status are major variables determining the environmental heterogeneity of glacier-fed streams. Bacterial communities formed a more complex and connected network, while the fungal communities formed a more clustered network. Moreover, the strong interrelations among the taxonomic dissimilarities of bacterial community and modules suggest they had common processes in driving diversity and taxonomic compositions across the heterogeneous environment. In contrast, fungal community and modules generally showed distinct driving processes to each other. Moreover, bacterial and fungal communities also had different driving processes. Furthermore, the variation of bacterial community and modules were strongly correlated with hydrological properties and vegetation status but not with nutrients, while fungal community and modules (except one module) were not associated with environmental variation. Our results suggest that bacterial and fungal communities had distinct mechanisms in structuring microbial networks, and environmental variation had strong influences on bacterial communities but not on fungal communities. The fungal communities have unique assembly mechanisms and physiological properties which might lead to their insensitive responses to environmental variations compared to bacterial communities. Overall, beyond alpha diversity in previous studies, these results add our knowledge that bacterial and fungal communities have contrasting assembly mechanisms and respond differently to environmental variation in glacier-fed streams.


2019 ◽  
Author(s):  
Ze Ren ◽  
Hongkai Gao

Bacterial and fungal communities in biofilms are important components in driving biogeochemical processes in stream ecosystems. Previous studies have well documented the patterns of bacterial alpha diversity in stream biofilms in glacier-fed streams, where, however, beta diversity of the microbial communities has received much less attention especially considering both bacterial and fungal communities. A focus on beta diversity can provide insights into the mechanisms driving community changes associated to large environmental fluctuations and disturbances, such as in glacier-fed streams. Moreover, modularity of co-occurrence networks can reveal more ecological and evolutionary properties of microbial communities beyond taxonomic groups. Here, integrating beta diversity and co-occurrence approach, we explored the network topology and modularity of the bacterial and fungal communities with consideration of environmental variation in glacier-fed streams in Central Asia. Combining results from hydrological modeling and normalized difference of vegetation index, this study highlighted that hydrological variables and vegetation status are major variables determining the environmental heterogeneity of glacier-fed streams. Bacterial communities formed a more complex and connected network, while the fungal communities formed a more clustered network. Moreover, the strong interrelations among the taxonomic dissimilarities of bacterial community and modules suggest they had common processes in driving diversity and taxonomic compositions across the heterogeneous environment. In contrast, fungal community and modules generally showed distinct driving processes to each other. Moreover, bacterial and fungal communities also had different driving processes. Furthermore, the variation of bacterial community and modules were strongly correlated with hydrological properties and vegetation status but not with nutrients, while fungal community and modules (except one module) were not associated with environmental variation. Our results suggest that bacterial and fungal communities had distinct mechanisms in structuring microbial networks, and environmental variation had strong influences on bacterial communities but not on fungal communities. The fungal communities have unique assembly mechanisms and physiological properties which might lead to their insensitive responses to environmental variations compared to bacterial communities. Overall, beyond alpha diversity in previous studies, these results add our knowledge that bacterial and fungal communities have contrasting assembly mechanisms and respond differently to environmental variation in glacier-fed streams.


2020 ◽  
Vol 12 (556) ◽  
pp. eaau9959 ◽  
Author(s):  
Shanna L. Ashley ◽  
Michael W. Sjoding ◽  
Antonia P. Popova ◽  
Tracy X. Cui ◽  
Matthew J. Hoostal ◽  
...  

Inhaled oxygen, although commonly administered to patients with respiratory disease, causes severe lung injury in animals and is associated with poor clinical outcomes in humans. The relationship between hyperoxia, lung and gut microbiota, and lung injury is unknown. Here, we show that hyperoxia conferred a selective relative growth advantage on oxygen-tolerant respiratory microbial species (e.g., Staphylococcus aureus) as demonstrated by an observational study of critically ill patients receiving mechanical ventilation and experiments using neonatal and adult mouse models. During exposure of mice to hyperoxia, both lung and gut bacterial communities were altered, and these communities contributed to oxygen-induced lung injury. Disruption of lung and gut microbiota preceded lung injury, and variation in microbial communities correlated with variation in lung inflammation. Germ-free mice were protected from oxygen-induced lung injury, and systemic antibiotic treatment selectively modulated the severity of oxygen-induced lung injury in conventionally housed animals. These results suggest that inhaled oxygen may alter lung and gut microbial communities and that these communities could contribute to lung injury.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anthony Horner ◽  
Samuel S. Browett ◽  
Rachael E. Antwis

AbstractModern agricultural practices have vastly increased crop production but negatively affected soil health. As such, there is a call to develop sustainable, ecologically-viable approaches to food production. Mixed-cropping of plant varieties can increase yields, although impacts on plant-associated microbial communities are unclear, despite their critical role in plant health and broader ecosystem function. We investigated how mixed-cropping between two field pea (Pisum sativum L.) varieties (Winfreda and Ambassador) influenced root-associated microbial communities and yield. The two varieties supported significantly different fungal and bacterial communities when grown as mono-crops. Mixed-cropping caused changes in microbial communities but with differences between varieties. Root bacterial communities of Winfreda remained stable in response to mixed-cropping, whereas those of Ambassador became more similar to Winfreda. Conversely, root fungal communities of Ambassador remained stable under mixed-cropping, and those of Winfreda shifted towards the composition of Ambassador. Microbial co-occurrence networks of both varieties were stronger and larger under mixed-cropping, which may improve stability and resilience in agricultural soils. Both varieties produced slightly higher yields under mixed-cropping, although overall Ambassador plants produced higher yields than Winfreda plants. Our results suggest that variety diversification may increase yield and promote microbial interactions.


2019 ◽  
Author(s):  
Chen Chen ◽  
Lilan Hao ◽  
Weixia Wei ◽  
Fei Li ◽  
Liju Song ◽  
...  

AbstractHuman urine is traditionally considered to be sterile, and whether the urine harbours distinct microbial communities has been a matter of debate. The potential link between female urine and reproductive tract microbial communities is currently not clear.Here we collected the urine samples from 147 Chinese women of reproductive age, and explored the nature of colonization by 16S rRNA gene amplicon sequencing, real-time qPCR and live bacteria culture. To demonstrate utility intra-individual Spearman’s correlation was used to explore the relationship between urine and multi-sites of the reproductive tract. PERMANOVA was also performed to explore potential correlations between the lifestyle and various clinical factors and urinary bacterial communities. Our data demonstrated distinct bacterial communities in urine, indicative of a non-sterile environment. Types of diverse, Streptococcus-dominated, and Lactobacillus-dominated were the three most common types in the cohort. Detailed comparison of the urinary microbiota to the multi-sites of reproductive tract microbiota demonstrated the urinary microbiota was more similar to the microbiota in the cervix and uterine cavity instead of vagina in the same women.Our data demonstrates the potential connectivity of the microbiota in the female urogenital system and provided insight into the exploration of urethra and genital tract diseases.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Pengfan Zhang ◽  
Stjin Spaepen ◽  
Yang Bai ◽  
Stephane Hacquard ◽  
Ruben Garrido-Oter

AbstractSynthetic microbial communities (SynComs) constitute an emerging and powerful tool in biological, biomedical, and biotechnological research. Despite recent advances in algorithms for the analysis of culture-independent amplicon sequencing data from microbial communities, there is a lack of tools specifically designed for analyzing SynCom data, where reference sequences for each strain are available. Here we present Rbec, a tool designed for the analysis of SynCom data that accurately corrects PCR and sequencing errors in amplicon sequences and identifies intra-strain polymorphic variation. Extensive evaluation using mock bacterial and fungal communities show that our tool outperforms current methods for samples of varying complexity, diversity, and sequencing depth. Furthermore, Rbec also allows accurate detection of contaminants in SynCom experiments.


2009 ◽  
Vol 75 (11) ◽  
pp. 3407-3418 ◽  
Author(s):  
Jorge Alonso-Gutiérrez ◽  
Antonio Figueras ◽  
Joan Albaigés ◽  
Núria Jiménez ◽  
Marc Viñas ◽  
...  

ABSTRACT The bacterial communities in two different shoreline matrices, rocks and sand, from the Costa da Morte, northwestern Spain, were investigated 12 months after being affected by the Prestige oil spill. Culture-based and culture-independent approaches were used to compare the bacterial diversity present in these environments with that at a nonoiled site. A long-term effect of fuel on the microbial communities in the oiled sand and rock was suggested by the higher proportion of alkane and polyaromatic hydrocarbon (PAH) degraders and the differences in denaturing gradient gel electrophoresis patterns compared with those of the reference site. Members of the classes Alphaproteobacteria and Actinobacteria were the prevailing groups of bacteria detected in both matrices, although the sand bacterial community exhibited higher species richness than the rock bacterial community did. Culture-dependent and -independent approaches suggested that the genus Rhodococcus could play a key role in the in situ degradation of the alkane fraction of the Prestige fuel together with other members of the suborder Corynebacterineae. Moreover, other members of this suborder, such as Mycobacterium spp., together with Sphingomonadaceae bacteria (mainly Lutibacterium anuloederans), were related as well to the degradation of the aromatic fraction of the Prestige fuel. The multiapproach methodology applied in the present study allowed us to assess the complexity of autochthonous microbial communities related to the degradation of heavy fuel from the Prestige and to isolate some of their components for a further physiological study. Since several Corynebacterineae members related to the degradation of alkanes and PAHs were frequently detected in this and other supralittoral environments affected by the Prestige oil spill along the northwestern Spanish coast, the addition of mycolic acids to bioremediation amendments is proposed to favor the presence of these degraders in long-term fuel pollution-affected areas with similar characteristics.


Insects ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 248 ◽  
Author(s):  
Letian Xu ◽  
Liuwei Sun ◽  
Shihan Zhang ◽  
Shanshan Wang ◽  
Min Lu

Dendroctonus valens, an invasive bark beetle, has caused severe damage to Chinese forests. Previous studies have highlighted the importance of the gut microbiota and its fundamental role in host fitness. Culture-dependent and culture-independent methods have been applied in analyzing beetles’ gut microbiota. The former method cannot present a whole picture of the community, and the latter mostly generates short read lengths that cannot be assigned to species. Here, the PacBio sequencing system was utilized to capture full-length 16S rRNA sequences in D. valens gut throughout its ontogeny. A total of eight phyla, 55 families, 102 genera, and 253 species were identified. Bacterial communities in colonized beetles have the greatest richness but the lowest evenness in all life stages, which is different from those in young larvae. Pseudomonas sp., Serratia liquefaciens possess high abundance throughout its ontogeny and may serve as members of the core bacteriome. A phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis predicted that gut microbiota in larvae are rich in genes involved in carbohydrate, energy metabolism. Gut microbiota in both larvae and colonized beetles are rich in xenobiotics and terpenoids biodegradation, which are decreased in dispersal beetles. Considering that the results are based mainly on the analysis of 16S rRNA sequencing and PICRUSt prediction, further confirmation is needed to improve the knowledge of the gut microbiota in D. valens and help to resolve taxonomic uncertainty at the species level.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7715 ◽  
Author(s):  
Ze Ren ◽  
Hongkai Gao

Bacterial and fungal communities in biofilms are important components in driving biogeochemical processes in stream ecosystems. Previous studies have well documented the patterns of bacterial alpha diversity in stream biofilms in glacier-fed streams, where, however, beta diversity of the microbial communities has received much less attention especially considering both bacterial and fungal communities. A focus on beta diversity can provide insights into the mechanisms driving community changes associated to large environmental fluctuations and disturbances, such as in glacier-fed streams. Moreover, modularity of co-occurrence networks can reveal more ecological and evolutionary properties of microbial communities beyond taxonomic groups. Here, integrating beta diversity and co-occurrence approach, we explored the network topology and modularity of the bacterial and fungal communities with consideration of environmental variation in glacier-fed streams in Central Asia. Combining results from hydrological modeling and normalized difference of vegetation index, this study highlighted that hydrological variables and vegetation status are major variables determining the environmental heterogeneity of glacier-fed streams. Bacterial communities formed a more complex and connected network, while the fungal communities formed a more clustered network. Moreover, the strong interrelations among the taxonomic dissimilarities of bacterial community (BC) and modules suggest they had common processes in driving diversity and taxonomic compositions across the heterogeneous environment. In contrast, fungal community (FC) and modules generally showed distinct driving processes to each other. Moreover, bacterial and fungal communities also had different driving processes. Furthermore, the variation of BC and modules were strongly correlated with hydrological properties and vegetation status but not with nutrients, while FC and modules (except one module) were not associated with environmental variation. Our results suggest that bacterial and fungal communities had distinct mechanisms in structuring microbial networks, and environmental variation had strong influences on bacterial communities but not on fungal communities. The fungal communities have unique assembly mechanisms and physiological properties which might lead to their insensitive responses to environmental variations compared to bacterial communities. Overall, beyond alpha diversity in previous studies, these results add our knowledge that bacterial and fungal communities have contrasting assembly mechanisms and respond differently to environmental variation in glacier-fed streams.


2021 ◽  
Vol 87 (6) ◽  
Author(s):  
F. Fracchia ◽  
L. Mangeot-Peter ◽  
L. Jacquot ◽  
F. Martin ◽  
C. Veneault-Fourrey ◽  
...  

ABSTRACT Through their roots, trees interact with a highly complex community of microorganisms belonging to various trophic guilds and contributing to tree nutrition, development, and protection against stresses. Tree roots select for specific microbial species from the bulk soil communities. The root microbiome formation is a dynamic process, but little is known on how the different microorganisms colonize the roots and how the selection occurs. To decipher whether the final composition of the root microbiome is the product of several waves of colonization by different guilds of microorganisms, we planted sterile rooted cuttings of gray poplar obtained from plantlets propagated in axenic conditions in natural poplar stand soil. We analyzed the root microbiome at different time points between 2 and 50 days of culture by combining high-throughput Illumina MiSeq sequencing of the fungal ribosomal DNA internal transcribed spacer and bacterial 16S rRNA amplicons with confocal laser scanning microscopy observations. The microbial colonization of poplar roots took place in three stages, but bacteria and fungi had different dynamics. Root bacterial communities were clearly different from those in the soil after 2 days of culture. In contrast, if fungi were also already colonizing roots after 2 days, the initial communities were very close to that in the soil and were dominated by saprotrophs. They were slowly replaced by endophytes and ectomycorhizal fungi. The replacement of the most abundant fungal and bacterial community members observed in poplar roots over time suggest potential competition effect between microorganisms and/or a selection by the host. IMPORTANCE The tree root microbiome is composed of a very diverse set of bacterial and fungal communities. These microorganisms have a profound impact on tree growth, development, and protection against different types of stress. They mainly originate from the bulk soil and colonize the root system, which provides a unique nutrient-rich environment for a diverse assemblage of microbial communities. In order to better understand how the tree root microbiome is shaped over time, we observed the composition of root-associated microbial communities of naive plantlets of poplar transferred in natural soil. The composition of the final root microbiome relies on a series of colonization stages characterized by the dominance of different fungal guilds and bacterial community members over time. Our observations suggest an early stabilization of bacterial communities, whereas fungal communities are established following a more gradual pattern.


Sign in / Sign up

Export Citation Format

Share Document