scholarly journals Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis

2011 ◽  
Vol 9 (66) ◽  
pp. 89-101 ◽  
Author(s):  
Juliet R. C. Pulliam ◽  
Jonathan H. Epstein ◽  
Jonathan Dushoff ◽  
Sohayati A. Rahman ◽  
Michel Bunning ◽  
...  

Emerging zoonoses threaten global health, yet the processes by which they emerge are complex and poorly understood. Nipah virus (NiV) is an important threat owing to its broad host and geographical range, high case fatality, potential for human-to-human transmission and lack of effective prevention or therapies. Here, we investigate the origin of the first identified outbreak of NiV encephalitis in Malaysia and Singapore. We analyse data on livestock production from the index site (a commercial pig farm in Malaysia) prior to and during the outbreak, on Malaysian agricultural production, and from surveys of NiV's wildlife reservoir (flying foxes). Our analyses suggest that repeated introduction of NiV from wildlife changed infection dynamics in pigs. Initial viral introduction produced an explosive epizootic that drove itself to extinction but primed the population for enzootic persistence upon reintroduction of the virus. The resultant within-farm persistence permitted regional spread and increased the number of human infections. This study refutes an earlier hypothesis that anomalous El Niño Southern Oscillation-related climatic conditions drove emergence and suggests that priming for persistence drove the emergence of a novel zoonotic pathogen. Thus, we provide empirical evidence for a causative mechanism previously proposed as a precursor to widespread infection with H5N1 avian influenza and other emerging pathogens.

2021 ◽  
Vol 6 (1) ◽  
pp. 24
Author(s):  
Naomi Hauser ◽  
Alexis C. Gushiken ◽  
Shivakumar Narayanan ◽  
Shyam Kottilil ◽  
Joel V. Chua

Nipah virus (NiV) is a zoonotic paramyxovirus of the Henipavirus genus first identified in Malaysia in 1998. Henipaviruses have bat reservoir hosts and have been isolated from fruit bats found across Oceania, Asia, and Africa. Bat-to-human transmission is thought to be the primary mode of human NiV infection, although multiple intermediate hosts are described. Human infections with NiV were originally described as a syndrome of fever and rapid neurological decline following contact with swine. More recent outbreaks describe a syndrome with prominent respiratory symptoms and human-to-human transmission. Nearly annual outbreaks have been described since 1998 with case fatality rates reaching greater than 90%. The ubiquitous nature of the reservoir host, increasing deforestation, multiple mode of transmission, high case fatality rate, and lack of effective therapy or vaccines make NiV’s pandemic potential increasingly significant. Here we review the epidemiology and microbiology of NiV as well as the therapeutic agents and vaccines in development.


1970 ◽  
Vol 6 (2) ◽  
pp. 134-139 ◽  
Author(s):  
Farema Wahed ◽  
Syed Abdul Kader ◽  
Akhtarun Nessa ◽  
Md Mukti Mahamud

Nipah virus, a member of the genus Henipavirus, a new class of virus in the Paramyxoviridae family, has drawn attention as an emerging zoonotic virus in south east and south asian region. Case fatality rate of Nipah virus infection ranges from 40-70% although it has been as high as 100% in some outbreaks. Many of the outbreaks were attributed to pigs consuming fruits partially eaten by fruit bats, and transmission of infection to humans. In Bangladesh, 7 outbreaks of Nipah virus infection were identified during the period 2001–2007. In Bangladesh, Nipah virus infection was associated with contact with a sick cow, consumption of fresh date palm sap (potentially contaminated with pteropid bat saliva), and person-to-person transmission. In the most recent epidemic at least 15 people died due to Nipah virus infection in Hatibandha, Lalmonirhat district in a remote northern Bangladesh town in 2011 adding to the previous death toll of 113 in the country . Human infections range from asymptomatic infection to fatal encephalitis. Infected people initially develop influenzalike symptoms of fever, headaches, myalgia , vomiting and sore throat. This can be followed by dizziness, drowsiness, altered consciousness, and neurological signs that indicate acute encephalitis. Some people can also experience atypical pneumonia and severe respiratory problems. The virus is detected by ELISA, PCR, immunofluoroscent assay and isolation by cell culture. Treatment is mostly symptomatic and supportive as the effect of antiviral drugs is not satisfactory, and an effective vaccine is yet to be developed. So the very high case fatality addresses the need for adequate and strict control and preventive measures. DOI: http://dx.doi.org/10.3329/jbsp.v6i2.9764 JBSP 2011 6(2): 134-139


Author(s):  
Prarthana M. S.

Nipah virus (NiV) is one of the emerging highly pathogenic virus. Like Ebola and Zika viruses, NiV too is threatening the integrity of the mankind. The family Paramyxoviruses has been traditionally associated with a group of viruses with narrow host range and typically causes outbreaks with low mortality rates. But with the emergence of highly pathogenic Hendra virus and closely related NiV, they have evolved as a cause of fatal encephalitis across broad range of vertebrate species including humans. The natural reservoir of NiV is Pteropus bat, which is apparently distributed all over the South East Asia. The bat population from North East to North West states in India have NiV antibodies which mean there is active NiV infection among Indian bats. As NiV is associated with high morbidity and mortality they pose a risk from natural outbreaks, laboratory accidents or deliberate misuse. The development of effective prevention and treatment strategies is very crucial. Preparedness, surveillance, constant vigil needs to be carried out continuously in the country. The present outbreak in India after nearly eleven years with a high case fatality rate indicate that there is a total lack of health care systems preparedness and surveillance strategy. The anthropogenic and environmental changes occurring due to rapid urbanization and massive deforestation has made India now even more vulnerable for such recurrent outbreaks. This review highlights the changing trend of the NiV outbreaks in the past and the current outbreak in India.


2016 ◽  
Vol 6 (2) ◽  
pp. 101-105 ◽  
Author(s):  
Abu Bakar Siddique ◽  
Jannatul Fardows ◽  
Nasreen Farhana ◽  
Maksud Mazumder

Nipah virus, a member of the genus Henipavirus, a new class of virus in the Paramyxoviridae family, has drawn attention as an emerging zoonotic virus in South-East and South Asian region. Case fatality rate of Nipah virus infection ranges from 40–70% although it has been as high as 100% in some outbreaks. Many of the outbreaks were attributed to pigs consuming fruits, partially eaten by fruit bats, and transmission of infection to humans. In Bangladesh, Nipah virus infection was associated with contact with a sick cow, consumption of fresh date palm sap (potentially contaminated with pteropid bat saliva), and person-to-person transmission. In 2014, 18 cases of Nipah virus infection have been reported in Bangladesh, of which 9 cases died. In the most recent epidemic at least 6 people died out of nine cases due to Nipah virus infection in the remote northern Bangladesh in 2015. Human infections range from asymptomatic infection to fatal encephalitis. Some people can also experience atypical pneumonia and severe respiratory problems. The virus is detected by ELISA, PCR, immunofluoroscence assay and isolation by cell culture. Treatment is mostly symptomatic and supportive as the effect of antiviral drugs is not satisfactory, and an effective vaccine is yet to be developed. So the very high case fatality addresses the need for adequate and strict control and preventive measures.J Enam Med Col 2016; 6(2): 101-105


2021 ◽  
Author(s):  
Peter T. Habib

Abstract Nipah virus (NiV) is a zoonotic paramyxovirus of the Henipavirus genus first identified in Malaysia in 1998. Henipavirus have bat reservoir hosts and have been isolated from fruit bats found across Oceania, Asia, and Africa. Bat-to-human transmission is thought to be the primary mode of human NiV infection, although multiple intermediate hosts are described. Human infections with NiV were originally described as a syndrome of fever and rapid neurological decline following contact with swine. More recent outbreaks describe a syndrome with prominent respiratory symptoms and human-to-human transmission. Nearly annual outbreaks have been described since 1998 with case fatality rates reaching greater than 90%. To prevent the spreading of the Nipah virus and turning it into a new pandemic, we must be armed with a ready-made vaccine to save the time consuming that vaccine takes until production. Here we in this paper, we analyzed the whole Nipah virus proteome to find out the most antigenic, non-allergic, and immune inducing epitopes to construct different vaccines that undergone deep investigation to reveal the most appropriate vaccine to immunize humanity from this probably pandemic.


2009 ◽  
Vol 30 (4) ◽  
pp. 145
Author(s):  
John S MacKenzie ◽  
Stephen J Prowse

Nipah virus emerged in 1999 in Peninsula Malaysia, where it caused a severe respiratory disease in pigs, some of which also displayed encephalitic symptoms. Humans became infected following contact with infected pigs and suffered a severe encephalitic disease. There were a total of 276 human infections in Malaysia and Singapore, with 106 deaths, a case fatality rate of 38.4% 1. The outbreak was finally contained by culling just over one million pigs at significant cost to the Malaysian economy.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


2020 ◽  
Vol 94 ◽  
Author(s):  
A.L. May-Tec ◽  
N.A. Herrera-Castillo ◽  
V.M. Vidal-Martínez ◽  
M.L. Aguirre-Macedo

Abstract We present a time series of 13 years (2003–2016) of continuous monthly data on the prevalence and mean abundance of the trematode Oligogonotylus mayae for all the hosts involved in its life cycle. We aimed to determine whether annual (or longer than annual) environmental fluctuations affect these infection parameters of O. mayae in its intermediate snail host Pyrgophorus coronatus, and its second and definitive fish host Mayaheros urophthalmus from the Celestun tropical coastal lagoon, Yucatan, Mexico. Fourier time series analysis was used to identify infection peaks over time, and cross-correlation among environmental forcings and infection parameters. Our results suggest that the transmission of O. mayae in all its hosts was influenced by the annual patterns of temperature, salinity and rainfall. However, there was a biannual accumulation of metacercarial stages of O. mayae in M. urophthalmus, apparently associated with the temporal range of the El Niño-Southern Oscillation (five years) and the recovery of the trematode population after a devasting hurricane. Taking O. mayae as an example of what could be happening to other trematodes, it is becoming clear that environmental forcings acting at long-term temporal scales affect the population dynamics of these parasites.


2019 ◽  
Author(s):  
Sandy Bauherr ◽  
Filip Larsberg ◽  
Annett Petrich ◽  
Hannah Sabeth Sperber ◽  
Victoria Klose ◽  
...  

AbstractViruses from the taxonomic familyHantaviridaeare encountered as emerging pathogens causing two life-threatening human zoonoses: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) with case fatalities of up to 50%. Here we comprehensively investigated entry of the Old-World Hantavirus, Puumala virus (PUUV), into mammalian cells, showing that upon treatment with pharmacological inhibitors of macropinocytosis and clathrin-mediated endocytosis, PUUV infections are significantly reduced. We demonstrated that the inhibitors did not interfere with viral replication and that RNA interference, targeting cellular mediators of macropinocytosis, is able to decrease PUUV infection levels significantly. Moreover, we established lipophilic tracer staining of PUUV virus particles and showed co-localization of stained virions and markers of macropinocytic uptake. Cells treated with lysosomotrophic agents were shown to exhibit an increased resistance to infection, confirming previous data suggesting that a low pH-dependent step is involved in PUUV infection. Finally, we observed a significant increase in the fluid-phase uptake of cell infected with PUUV, indicative of a virus-triggered promotion of macropinocytosis.Author SummaryTheHantaviridaefamily comprises a very diverse group of virus species and is considered an emerging global public health threat. Human pathogenic hantaviruses are primarily rodent-borne. Zoonosis is common with more than 150,000 annually registered cases and a case fatality index of up to 50%. Individual hantavirus species differ significantly in terms of their pathogenicity, but also their cell biology and host-pathogen interactions. In this study, we focused on the most prevalent pathogenic hantavirus in Europe, Puumala virus (PUUV), and investigated the entry and internalization of PUUV virions into mammalian cells. We showed that both, clathrin-mediated endocytosis and macropinocytosis, are cellular pathways exploited by the virus to establish productive infections and demonstrated that pharmacological inhibition of macropinocytosis or its targeted knockdown using RNA interference significantly reduced viral infections. We also found indications for an increase of macropinocytic uptake upon PUUV infections, suggesting that the virus triggers specific cellular mechanisms in order to promote its own internalization and facilitate infections.


Narra J ◽  
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Pandji Wibawa Dhewantara ◽  
Kurnia F. Jamil ◽  
Jonny Karunia Fajar ◽  
Panji Probo Saktianggi ◽  
Roy Nusa ◽  
...  

This study was conducted to quantify the trend in dengue notifications in the country in 2017 and to explore the possible determinants. Annual nation-wide dengue notification data were obtained from the National Disease Surveillance of Ministry of Health of Indonesia. Annual incidence rate (IR) and case fatality rate (CFR) in 2017 and the previous years were quantified and compared. Correlations between annual larva free index (LFI), implementation coverage of integrated vector management (IVM), El Niño Southern Oscillation (Niño3.4), Dipole Mode Index (DMI), Zika virus seropositivity and the percent change in IR and CFR of dengue were examined. The change of dengue IR and CFRs were mapped. In 2017, dengue IR was declined by 71% (22.55 per 100,000 population) compared to 2016 (77.96 per 100,000 population) while the CFR was slightly reduced from 0.79% to 0.75%. Reduction in IR and CFR occurred in 94.1% and 70.1% out of 34 provinces, respectively. The trend of dengue IR seems to be influenced by Niño3.4 but there is no clear evidence that Niño3.4 is the main reason for dengue reduction in 2017. It is difficult to elucidate that the reduction of dengue in 2017 was associated with previous Zika outbreaks. In conclusion, there was a significant reduction on dengue notifications in Indonesia in 2017. Further investigation is needed to look at the role of climate on the decline of dengue IR at finer temporal scale. In addition, study on the role of cross-protective immunity generated by Zika infection on dengue incidence is also warranted.


Sign in / Sign up

Export Citation Format

Share Document