scholarly journals Deep learning improves taphonomic resolution: high accuracy in differentiating tooth marks made by lions and jaguars

2020 ◽  
Vol 17 (168) ◽  
pp. 20200446 ◽  
Author(s):  
Blanca Jiménez-García ◽  
José Aznarte ◽  
Natalia Abellán ◽  
Enrique Baquedano ◽  
Manuel Domínguez-Rodrigo

Taphonomists have long struggled with identifying carnivore agency in bone accumulation and modification. Now that several taphonomic techniques allow identifying carnivore modification of bones, a next step involves determining carnivore type. This is of utmost importance to determine which carnivores were preying on and competing with hominins and what types of interaction existed among them during prehistory. Computer vision techniques using deep architectures of convolutional neural networks (CNN) have enabled significantly higher resolution in the identification of bone surface modifications (BSM) than previous methods. Here, we apply these techniques to test the hypothesis that different carnivores create specific BSM that can enable their identification. To make differentiation more challenging, we selected two types of carnivores (lions and jaguars) that belong to the same mammal family and have similar dental morphology. We hypothesize that if two similar carnivores can be identified by the BSM they imprint on bones, then two more distinctive carnivores (e.g. hyenids and felids) should be more easily distinguished. The CNN method used here shows that tooth scores from both types of felids can be successfully classified with an accuracy greater than 82%. The first hypothesis was successfully tested. The next step will be to differentiate diverse carnivore types involving a wider range of carnivore-made BSM. The present study demonstrates that resolution increases when combining two different disciplines (taphonomy and artificial intelligence computing) in order to test new hypotheses that could not be addressed with traditional taphonomic methods.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manuel Domínguez-Rodrigo ◽  
Gabriel Cifuentes-Alcobendas ◽  
Blanca Jiménez-García ◽  
Natalia Abellán ◽  
Marcos Pizarro-Monzo ◽  
...  

Abstract Bone surface modifications are foundational to the correct identification of hominin butchery traces in the archaeological record. Until present, no analytical technique existed that could provide objectivity, high accuracy, and an estimate of probability in the identification of multiple structurally-similar and dissimilar marks. Here, we present a major methodological breakthrough that incorporates these three elements using Artificial Intelligence (AI) through computer vision techniques, based on convolutional neural networks. This method, when applied to controlled experimental marks on bones, yielded the highest rate documented to date of accurate classification (92%) of cut, tooth and trampling marks. After testing this method experimentally, it was applied to published images of some important traces purportedly indicating a very ancient hominin presence in Africa, America and Europe. The preliminary results are supportive of interpretations of ancient butchery in some places, but not in others, and suggest that new analyses of these controversial marks should be done following the protocol described here to confirm or disprove these archaeological interpretations.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andre Esteva ◽  
Katherine Chou ◽  
Serena Yeung ◽  
Nikhil Naik ◽  
Ali Madani ◽  
...  

AbstractA decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields—including medicine—to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the development of modern computer vision techniques—powered by deep learning—for medical applications, focusing on medical imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging applications that stand to benefit—including cardiology, pathology, dermatology, ophthalmology–and propose new avenues for continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these technologies.


2021 ◽  
pp. PP. 18-50
Author(s):  
Ahmed A. Elngar ◽  
◽  
◽  
◽  
◽  
...  

Computer vision is one of the fields of computer science that is one of the most powerful and persuasive types of artificial intelligence. It is similar to the human vision system, as it enables computers to recognize and process objects in pictures and videos in the same way as humans do. Computer vision technology has rapidly evolved in many fields and contributed to solving many problems, as computer vision contributed to self-driving cars, and cars were able to understand their surroundings. The cameras record video from different angles around the car, then a computer vision system gets images from the video, and then processes the images in real-time to find roadside ends, detect other cars, and read traffic lights, pedestrians, and objects. Computer vision also contributed to facial recognition; this technology enables computers to match images of people’s faces to their identities. which these algorithms detect facial features in images and then compare them with databases. Computer vision also play important role in Healthcare, in which algorithms can help automate tasks such as detecting Breast cancer, finding symptoms in x-ray, cancerous moles in skin images, and MRI scans. Computer vision also contributed to many fields such as image classification, object discovery, motion recognition, subject tracking, and medicine. The rapid development of artificial intelligence is making machine learning more important in his field of research. Use algorithms to find out every bit of data and predict the outcome. This has become an important key to unlocking the door to AI. If we had looked to deep learning concept, we find deep learning is a subset of machine learning, algorithms inspired by structure and function of the human brain called artificial neural networks, learn from large amounts of data. Deep learning algorithm perform a task repeatedly, each time tweak it a little to improve the outcome. So, the development of computer vision was due to deep learning. Now we'll take a tour around the convolution neural networks, let us say that convolutional neural networks are one of the most powerful supervised deep learning models (abbreviated as CNN or ConvNet). This name ;convolutional ; is a token from a mathematical linear operation between matrixes called convolution. CNN structure can be used in a variety of real-world problems including, computer vision, image recognition, natural language processing (NLP), anomaly detection, video analysis, drug discovery, recommender systems, health risk assessment, and time-series forecasting. If we look at convolutional neural networks, we see that CNN are similar to normal neural networks, the only difference between CNN and ANN is that CNNs are used in the field of pattern recognition within images mainly. This allows us to encode the features of an image into the structure, making the network more suitable for image-focused tasks, with reducing the parameters required to set-up the model. One of the advantages of CNN that it has an excellent performance in machine learning problems. So, we will use CNN as a classifier for image classification. So, the objective of this paper is that we will talk in detail about image classification in the following sections.


2020 ◽  
Vol 7 (1) ◽  
pp. 2-3
Author(s):  
Shadi Saleh

Deep learning and machine learning innovations are at the core of the ongoing revolution in Artificial Intelligence for the interpretation and analysis of multimedia data. The convergence of large-scale datasets and more affordable Graphics Processing Unit (GPU) hardware has enabled the development of neural networks for data analysis problems that were previously handled by traditional handcrafted features. Several deep learning architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short Term Memory (LSTM)/Gated Recurrent Unit (GRU), Deep Believe Networks (DBN), and Deep Stacking Networks (DSNs) have been used with new open source software and libraries options to shape an entirely new scenario in computer vision processing.


Author(s):  
Saad Sadiq ◽  
Mei-Ling Shyu ◽  
Daniel J. Feaster

Deep Neural Networks (DNNs) are best known for being the state-of-the-art in artificial intelligence (AI) applications including natural language processing (NLP), speech processing, computer vision, etc. In spite of all recent achievements of deep learning, it has yet to achieve semantic learning required to reason about the data. This lack of reasoning is partially imputed to the boorish memorization of patterns and curves from millions of training samples and ignoring the spatiotemporal relationships. The proposed framework puts forward a novel approach based on variational autoencoders (VAEs) by using the potential outcomes model and developing the counterfactual autoencoders. The proposed framework transforms any sort of multimedia input distributions to a meaningful latent space while giving more control over how the latent space is created. This allows us to model data that is better suited to answer inference-based queries, which is very valuable in reasoning-based AI applications.


Author(s):  
Dr. Suma V.

The paper is a review on the computer vision that is helpful in the interaction between the human and the machines. The computer vision that is termed as the subfield of the artificial intelligence and the machine learning is capable of training the computer to visualize, interpret and respond back to the visual world in a similar way as the human vision does. Nowadays the computer vision has found its application in broader areas such as the heath care, safety security, surveillance etc. due to the progress, developments and latest innovations in the artificial intelligence, deep learning and neural networks. The paper presents the enhanced capabilities of the computer vision experienced in various applications related to the interactions between the human and machines involving the artificial intelligence, deep learning and the neural networks.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 443
Author(s):  
Chyan-long Jan

Because of the financial information asymmetry, the stakeholders usually do not know a company’s real financial condition until financial distress occurs. Financial distress not only influences a company’s operational sustainability and damages the rights and interests of its stakeholders, it may also harm the national economy and society; hence, it is very important to build high-accuracy financial distress prediction models. The purpose of this study is to build high-accuracy and effective financial distress prediction models by two representative deep learning algorithms: Deep neural networks (DNN) and convolutional neural networks (CNN). In addition, important variables are selected by the chi-squared automatic interaction detector (CHAID). In this study, the data of Taiwan’s listed and OTC sample companies are taken from the Taiwan Economic Journal (TEJ) database during the period from 2000 to 2019, including 86 companies in financial distress and 258 not in financial distress, for a total of 344 companies. According to the empirical results, with the important variables selected by CHAID and modeling by CNN, the CHAID-CNN model has the highest financial distress prediction accuracy rate of 94.23%, and the lowest type I error rate and type II error rate, which are 0.96% and 4.81%, respectively.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rama K. Vasudevan ◽  
Maxim Ziatdinov ◽  
Lukas Vlcek ◽  
Sergei V. Kalinin

AbstractDeep neural networks (‘deep learning’) have emerged as a technology of choice to tackle problems in speech recognition, computer vision, finance, etc. However, adoption of deep learning in physical domains brings substantial challenges stemming from the correlative nature of deep learning methods compared to the causal, hypothesis driven nature of modern science. We argue that the broad adoption of Bayesian methods incorporating prior knowledge, development of solutions with incorporated physical constraints and parsimonious structural descriptors and generative models, and ultimately adoption of causal models, offers a path forward for fundamental and applied research.


2021 ◽  
Vol 20 ◽  
pp. 153303382110163
Author(s):  
Danju Huang ◽  
Han Bai ◽  
Li Wang ◽  
Yu Hou ◽  
Lan Li ◽  
...  

With the massive use of computers, the growth and explosion of data has greatly promoted the development of artificial intelligence (AI). The rise of deep learning (DL) algorithms, such as convolutional neural networks (CNN), has provided radiation oncologists with many promising tools that can simplify the complex radiotherapy process in the clinical work of radiation oncology, improve the accuracy and objectivity of diagnosis, and reduce the workload, thus enabling clinicians to spend more time on advanced decision-making tasks. As the development of DL gets closer to clinical practice, radiation oncologists will need to be more familiar with its principles to properly evaluate and use this powerful tool. In this paper, we explain the development and basic concepts of AI and discuss its application in radiation oncology based on different task categories of DL algorithms. This work clarifies the possibility of further development of DL in radiation oncology.


Sign in / Sign up

Export Citation Format

Share Document