scholarly journals The miR-302/367 cluster: a comprehensive update on its evolution and functions

Open Biology ◽  
2015 ◽  
Vol 5 (12) ◽  
pp. 150138 ◽  
Author(s):  
Zeqian Gao ◽  
Xueliang Zhu ◽  
Yongxi Dou

microRNAs are a subclass of small non-coding RNAs that fine-tune the regulation of gene expression at the post-transcriptional level. The miR-302/367 cluster, generally consisting of five members, miR-367, miR-302d, miR-302a, miR-302c and miR-302b, is ubiquitously distributed in vertebrates and occupies an intragenic cluster located in the gene La-related protein 7 ( LARP7 ). The cluster was demonstrated to play an important role in diverse biological processes, such as the pluripotency of human embryonic stem cells (hESCs), self-renewal and reprogramming. This paper provides an overview of the mir-302/367 cluster, discusses our current understanding of the cluster's evolutionary history and transcriptional regulation and reviews the literature surrounding the cluster's roles in cell cycle regulation, epigenetic regulation and different cellular signalling pathways.

2017 ◽  
Vol 131 (23) ◽  
pp. 2813-2834 ◽  
Author(s):  
Ricardo Cambraia Parreira ◽  
Leandro Heleno Guimarães Lacerda ◽  
Rebecca Vasconcellos ◽  
Swiany Silveira Lima ◽  
Anderson Kenedy Santos ◽  
...  

Resistant hypertension (RH) is a clinical condition in which the hypertensive patient has become resistant to drug therapy and is often associated with increased cardiovascular morbidity and mortality. Several signalling pathways have been studied and related to the development and progression of RH: modulation of sympathetic activity by leptin and aldosterone, primary aldosteronism, arterial stiffness, endothelial dysfunction and variations in the renin–angiotensin–aldosterone system (RAAS). miRNAs comprise a family of small non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. miRNAs are involved in the development of both cardiovascular damage and hypertension. Little is known of the molecular mechanisms that lead to development and progression of this condition. This review aims to cover the potential roles of miRNAs in the mechanisms associated with the development and consequences of RH, and explore the current state of the art of diagnostic and therapeutic tools based on miRNA approaches.


2020 ◽  
Vol 52 (8) ◽  
pp. 791-800
Author(s):  
Menghuan Guo ◽  
Lu Gan ◽  
Jing Si ◽  
Jinhua Zhang ◽  
Zhiyuan Liu ◽  
...  

Abstract MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate target mRNAs at the post-transcriptional level. Increasing evidence shows the involvement of miRNAs in diverse biological processes. miR-302/367 cluster is highly conserved among vertebrates and made up of five members, including miR-367, miR-302a, miR-302b, miR-302c and miR-302d. miR-302/367 cluster plays an important role in cell proliferation, differentiation and reprogramming, affecting the development of tumor, cardiovascular system, nervous system and immune system. In this review, we will summarize the role of miR-302/367 cluster in embryonic stem cells and induced pluripotent stem cells and try to point out its relationship with tumors, cardiovascular system, nervous system and immune system.


MicroRNA ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sara Tomei ◽  
Harshitha Shobha Manjunath ◽  
Selvasankar Murugesan ◽  
Souhaila Al Khodor

: MicroRNAs (miRNAs) are non-coding RNAs ranging from 18-24 nucleotides also known to regulate the human genome mainly at the post-transcriptional level. MiRNAs were shown to play an important role in most biological processes such as apoptosis and in the pathogenesis of many diseases such as cardiovascular diseases and cancer. Recent developments of advanced molecular high-throughput technologies have enhanced our knowledge of miRNAs. MiRNAs can now be discovered, interrogated, and quantified in various body fluids, and hence can serve as diagnostic and therapeutic markers for many diseases. While most studies use blood as a sample source to measure circulating miRNAs as possible biomarkers for disease pathogenesis, fewer studies have assessed the role of salivary miRNAs in health and disease. This review aims at providing an overview of the current knowledge of the salivary miRNome, addressing the technical aspects of saliva sampling and highlighting the applicability of miRNA screening to clinical practice.


Author(s):  
Ryan Kyger ◽  
Agusto Luzuriaga-Neira ◽  
Thomas Layman ◽  
Tatiana Orli Milkewitz Sandberg ◽  
Devika Singh ◽  
...  

Abstract DNA cytosine methylation is central to many biological processes, including regulation of gene expression, cellular differentiation, and development. This DNA modification is conserved across animals, having been found in representatives of sponges, ctenophores, cnidarians, and bilaterians, and with very few known instances of secondary loss in animals. Myxozoans are a group of microscopic, obligate endoparasitic cnidarians that have lost many genes over the course of their evolution from free-living ancestors. Here, we investigated the evolution of the key enzymes involved in DNA cytosine methylation in 29 cnidarians and found that these enzymes were lost in an ancestor of Myxosporea (the most speciose class of Myxozoa). Additionally, using whole-genome bisulfite sequencing, we confirmed that the genomes of two distant species of myxosporeans, Ceratonova shasta and Henneguya salminicola, completely lack DNA cytosine methylation. Our results add a notable and novel taxonomic group, the Myxosporea, to the very short list of animal taxa lacking DNA cytosine methylation, further illuminating the complex evolutionary history of this epigenetic regulatory mechanism.


2005 ◽  
Vol 187 (3) ◽  
pp. 327-332 ◽  
Author(s):  
Trinna L Cuellar ◽  
Michael T McManus

microRNAs (miRNAs) are highly conserved, non-coding RNAs that powerfully regulate gene expression at the post-transcriptional level. These fascinating molecules play essential roles in many biological processes in mammals, including insulin secretion, B-cell development, and adipocyte differentiation. This review provides a general background regarding current knowledge about miRNA biogenesis and the potential contributions of these RNAs to endocrine function.


2011 ◽  
Vol 286 (41) ◽  
pp. 35339-35346 ◽  
Author(s):  
Hee Young Seok ◽  
Mariko Tatsuguchi ◽  
Thomas E. Callis ◽  
Aibin He ◽  
William T. Pu ◽  
...  

microRNAs (miRNAs) are 21–23-nucleotide non-coding RNAs. It has become more and more evident that this class of small RNAs plays critical roles in the regulation of gene expression at the post-transcriptional level. MEF2A is a member of the MEF2 (myogenic enhancer factor 2) family of transcription factors. Prior report showed that the 3′-untranslated region (3′-UTR) of the Mef2A gene mediated its repression; however, the molecular mechanism underlying this intriguing observation was unknown. Here, we report that MEF2A is repressed by miRNAs. We identify miR-155 as one of the primary miRNAs that significantly represses the expression of MEF2A. We show that knockdown of the Mef2A gene by siRNA impairs myoblast differentiation. Similarly, overexpression of miR-155 leads to the repression of endogenous MEF2A expression and the inhibition of myoblast differentiation. Most importantly, reintroduction of MEF2A in miR-155 overexpressed myoblasts was able to partially rescue the miR-155-induced myoblast differentiation defect. Our data therefore establish miR-155 as an important regulator of MEF2A expression and uncover its function in muscle gene expression and myogenic differentiation.


2021 ◽  
Author(s):  
Wenchu Ye ◽  
Shi-Feng Huang ◽  
Lian-Jie Hou ◽  
Hai-Jiao Long ◽  
Ting Jiang ◽  
...  

Abstract Maintaining cholesterol homeostasis is essential for normal cellular and systemic functions. Long non-coding RNAs (lncRNAs) represent a mechanism to fine-tune numerous biological processes by controlling gene expression. LncRNAs have emerged as important regulators in cholesterol homeostasis. Dysregulation of lncRNAs expression is associated with lipid-related diseases, suggesting that manipulating the lncRNAs expression could be a promising therapeutic approach to ameliorate liver disease progression and cardiovascular disease (CVD). However, given the high-abundant lncRNAs and the poor genetic conservation between species, much work is required to elucidate the specific role of lncRNAs in regulating cholesterol homeostasis. In this review, we highlighted the latest advances in the pivotal role and mechanism of lncRNAs in regulating cholesterol homeostasis. These findings provide novel insights into the underlying mechanisms of lncRNAs in lipid-related diseases and may offer potential therapeutic targets for treating lipid-related diseases.


2013 ◽  
Vol 54 ◽  
pp. 17-28 ◽  
Author(s):  
Nham Tran ◽  
Gyorgy Hutvagner

Regulation of gene expression is a fundamental process in both prokaryotic and eukaryotic organisms. Multiple regulatory mechanisms are in place to control gene expression at the level of transcription, post-transcription and post-translation to maintain optimal RNA and protein expressions in cells. miRNAs (microRNAs) are abundant short 21–23 nt non-coding RNAs that are key regulators of virtually all eukaryotic biological processes. The levels of miRNAs in an organism are crucial for proper development and sustaining optimal cell functions. Therefore the processing and regulation of the processing of these miRNAs are critical. In the present chapter we highlight the most important steps of miRNA processing, describe the functions of key proteins involved in the maturation of miRNAs, and discuss how the generation and the stability of miRNAs are regulated.


2013 ◽  
Vol 127 (S2) ◽  
pp. S2-S7 ◽  
Author(s):  
I Gunawardena ◽  
J Fitzgerald ◽  
A Morley ◽  
D J Hussey ◽  
C M Woods ◽  
...  

AbstractBackground and methods:Head and neck cancer is the sixth most common cancer worldwide. Advances in management have not greatly altered overall survival. Over the last decade, there have been significant scientific advances in our knowledge of cell cycle regulation and the complex oncogenic processes. MicroRNAs are small, non-coding RNAs which are integral to the regulation of gene expression and which play a part in carcinogenesis. The literature on the role of microRNA in head and neck cancer is reviewed.Objective:To introduce the role and significance of microRNAs in head and neck cancer.Results:The possibilities of incorporating microRNAs into clinical practice are discussed, including their potential role in diagnosis, prognosis, prediction of metastatic spread, therapy and tumour surveillance.Conclusion:Discoveries in expression profiling of microRNA in head and neck oncology promise advancements in the diagnosis, prognosis and therapy of these cancers.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Qian Zhang ◽  
Yun-Fei Yan ◽  
Qing Lv ◽  
You-Jie Li ◽  
Ran-Ran Wang ◽  
...  

AbstractNon-coding RNAs (ncRNAs) involve in diverse biological processes by post-transcriptional regulation of gene expression. Emerging evidence shows that miRNA-4293 plays a significant role in the development of non-small cell lung cancer. However, the oncogenic functions of miR-4293 have not been studied. Our results demonstrated that miR-4293 expression is markedly enhanced in lung carcinoma tissue and cells. Moreover, miR-4293 promotes tumor cell proliferation and metastasis but suppresses apoptosis. Mechanistic investigations identified mRNA-decapping enzyme 2 (DCP2) as a target of miR-4293 and its expression is suppressed by miR-4293. DCP2 can directly or indirectly bind to WFDC21P and downregulates its expression. Consequently, miR-4293 can further promote WFDC21P expression by regulating DCP2. With a positive correlation to miR-4293 expression, WFDC21P also plays an oncogenic role in lung carcinoma. Furthermore, knockdown of WFDC21P results in functional attenuation of miR-4293 on tumor promotion. In vivo xenograft growth is also promoted by both miR-4293 and WFDC21P. Overall, our results establish oncogenic roles for both miR-4293 and WFDC21P and demonstrate that interactions between miRNAs and lncRNAs through DCP2 are important in the regulation of carcinoma pathogenesis. These results provided a valuable theoretical basis for the discovery of lung carcinoma therapeutic targets and diagnostic markers based on miR-4293 and WFDC21P.


Sign in / Sign up

Export Citation Format

Share Document